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1 Introduction

Linear regression models with endogenous regressors are typically identified using ex-

clusion restrictions, requiring instrumental variables that correlate with the endogenous

regressor but not with the errors in the outcome equation. However, valid instruments are

sometimes unavailable in empirical settings, leading to the development of methods that

address endogeneity without relying on exclusion restrictions (e.g., Rigobon 2003; Klein

and Vella 2010; Lewbel 2012). A recent contribution is Lewbel, Schennach, and Zhang

(2024), which studies a triangular two-equation system where endogeneity arises from a

common unobserved factor and achieves identification using higher moment restrictions

rather than instruments.

A key assumption in Lewbel, Schennach, and Zhang (2024) (hereafter LSZ) is that the

common unobservable is a scalar. This is not an innocuous restriction.1 For example,

in returns-to-schooling models, unobserved ability is often thought to simultaneously

influence both educational attainment and future earnings. Assuming a scalar common

latent variable implies that unobserved ability alone drives error correlations, excluding

the possibility of measurement error in the endogenous regressor. However, empirical

research often involves noisy or contaminated measures of the true variable. As Card

(2001) points out, OLS estimates in returns-to-schooling models frequently exhibit down-

ward bias, likely driven by an attenuation bias from measurement error in addition to

the upward bias from the unobserved ability. Indeed, measurement error in self-reported

educational attainment has been well-documented (see Black, Sanders, and Taylor 2003).

This paper shows that the coefficient of a mismeasured endogenous regressor can still

be identified without using instruments, under the assumption that the measurement error

is independent of other latent variables with unknown distributions. As in LSZ, we assume

mutual independence among all error components in the triangular structural model and

use the resulting moment constraints. Relaxing the single common factor assumption

1As LSZ notes in Supplement D for additional results of their application, discrepancies between their
proposed moment estimates and those from valid IV moments are likely due to violating this assumption.
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introduces challenges because, unlike LSZ, an additional unobservable appears in both

equations of the triangular system. Addressing this requires a different set of covariance

information and higher-order joint characteristic functions. The identification results in

this paper are most useful when the primary interest lies in estimating the causal effect

(the slope coefficient). For cases where the unknown distributions of latent variables are

of interest, we show that they can be point-identified under extra assumptions about the

distribution of the measurement error.

We extend the identification results to a more general model with a vector of com-

mon unobservables, with measurement error as a special case. This generalization is

particularly relevant in empirical contexts where multiple unobserved factors exist, each

contributing differently to error correlations. Despite the added complexity, estimation

remains straightforward, as easy-to-implement GMM estimators can be constructed using

low-order moments. Furthermore, we provide overidentifying moments, enabling more

precise estimates than those obtained with exact-identifying moments alone.

Our identification approach is most well-suited for settings where the structural model

motivated by economic theory suggests multiple sources of endogeneity, and traditional

instruments are weak or not available. Even when the common unobserved component

is a scalar, our moments remain applicable. Moreover, when ordinary instruments are

available, higher-order moments can be used alongside instruments to enhance efficiency

or test overidentifying restrictions.

We apply our identification results to study monopsony power in the labor market.

Evaluating monopsony power typically requires estimating the wage elasticity of labor

supply through a model that relates separation or recruitment to salaries. It’s widely

acknowledged in the literature that salary is endogenous, with unobserved factors, such

as ability, affecting both wages and the separation or recruitment probability. In addition,

salaries often contain measurement errors due to factors such as unreported compen-

sation (e.g., research grants), unaccounted benefits, stipends, overtime pay, and timing

mismatches for new hires. The separation or recruitment model is traditionally identified
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using instruments, exploiting exogenous changes in policies (e.g., Naidu, Nyarko, and

Wang 2016; Bassier, Dube, and Naidu 2021; Staiger, Spetz, and Phibbs 2010) or salary

scales (e.g., Ransom and Sims 2010; Yu and Flores-Lagunes 2024). However, exogenous

policy changes are rare, and salary scales are not always accessible, especially in empirical

settings with limited transparency in pay determination.

This section continues by offering examples of applications where endogeneity and

measurement errors present simultaneously, a review of the literature, and the contribu-

tion of our empirical application.

1.1 Examples of Mismeasured Endogenous Regressor. Beyond the aforementioned

applications, a mismeasured endogenous regressor arises in many other empirical con-

texts. For example, Dahl and Lochner (2012) study the effect of family income on child

achievement and point out the potential for mismeasurement in income data. Kaestner,

Joyce, and Wehbeh (1996) estimate a model relating maternal drug use to birth weight,

where drug usage is both endogenous and often mis-reported. Similar to our empirical

application, Hu, Shiu, and Woutersen (2015) explore a model linking the number of hours

worked to wages, and concern errors in the measured wage rate. In all these studies,

the model suffers from both endogeneity due to a common unobserved factor and mea-

surement error in the regressor. Applying LSZ’s method in such settings contradicts its

modeling assumptions and is therefore problematic.

More generally, in many cases, the unobservables consist of multiple latent variables.

For instance, Jia, Huang, and Zhao (2024) use LSZ’s method to estimate a model relating

firms’ output to foreign equity investment and note that unobservables can include various

factors such as CEO ability, development strategies, innovation, and more.

1.2 Literature The identification of a linear triangular structural model without exclu-

sion restrictions has been previously studied by Rigobon (2003), Klein and Vella (2010),

and Lewbel (2012). All these studies use heteroskedasticity as a source of identification,

imposing restrictions on how the variance, covariance, or higher moments of errors de-

pend on the regressors. In contrast, our approach allows for either heteroskedasticity or
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homoskedasticity.

This paper is also related to the literature on using higher moments to identify error-in-

variable models (Cragg 1997; Dagenais and Dagenais 1997). These models can be viewed

as a special case of our framework, with specific restrictions on model parameters. In par-

ticular, they omit the crucial element of endogeneity arising from a common unobserved

variable. As a result, our identification approach is not a direct extension of these studies

and requires different techniques.

There is also a substantial body of literature addressing both endogeneity and mea-

surement error in nonlinear models or models with a binary endogenous regressor (e.g.,

Song, Schennach, and White 2015; Hu, Shiu, and Woutersen 2015; Ura 2018). These stud-

ies typically rely on repeated measurements or instruments (or conditional variables) to

address both issues. By contrast, we focus on empirical settings where such auxiliary

information is unavailable, so their methodologies do not apply.

1.3 Monopsony Power in University System of Georgia (USG). There has been bur-

geoning interest about the monopsony power since 2010.2 Monopsony is naturally linked

to “thin” labor markets where the opportunities to change jobs are hard to find, giving

employers power to set the wage (Manning 2003b). A typical example of occupations that

face a “thin” labor market is university professors, who work in jobs requiring specialized

knowledge and are likely to have fewer outside job options. More studies are beginning

to examine monopsony power in the university faculty labor market. For example, Gools-

bee and Syverson (2023) and Yu and Flores-Lagunes (2024) studied monopsony in U.S.

academia. Both studies adopt an instrumental variable (IV) strategy. The former draws

on university-level salary data from IPEDS, while the latter uses faculty-level salary data

from the University of California system.

The growing blue-red state divide has shaped significant differences in higher educa-

tion policies across the United States. Republican-led, or “red” states, have implemented

reforms that alter traditional faculty protections, such as tenure, sparking debates on aca-

demic freedom and job security. Georgia, among the red states, serves as a prominent

2See Ashenfelter et al. (2022), Manning (2021), and Card (2022) for reviews.
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example of this trend. For example, The Washington Post article “Political polarization is

sorting colleges into red and blue schools” cites Georgia’s tenure policy reform as an example of

the red-blue divide in higher education between Democrat-led and Republican-led states

(Anderson 2023).3 The impacts of reforms on tenure could be far-reaching, extending

beyond academic freedom to the faculty labor market. These reforms are likely to alter the

attractiveness and amenities of the faculty profession in USG, influence labor supply, and

increase job turnover—all of which could in turn affect universities’ ability to set salaries.

Debates on the Georgia system abound, yet little analysis has been conducted on

this. Our application fills this gap, examining the monopsony power in USG using the

developed new method. We start by setting up an economic model motivating the linear

structural model. The model is then estimated using a novel and comprehensive faculty-

level dataset on three research R1 universities within the University System of Georgia.

The data combines administrative salary records with faculty characteristics we scraped

online, spanning from 2010 to 2022. This dataset is unique and has not been used in

other studies. The newly acquired faculty-level data allow us to estimate university-level

monopsony power for the USG. Moreover, the identification strategy eliminates questions

concerning the validity of instruments, and yields consistent estimates even when salary

is both endogenous and mismeasured.

We find evidence of monopsony, with the exploitation rate—a common measure of

monopsony power—robustly estimated at 36%. By comparing our results with those from

standard methods, we highlight the importance of addressing measurement error when

evaluating monopsony power, as ignoring the potentially mismeasured salaries would

lead to an underestimation of monopsony power. Our empirical analyses complement

prior work by providing novel evidence that monopsony power exists in a public university

system in a red state. Moreover, we demonstrate that its intensity varies over time,

3Similar views are documented by Douglass (2022): “In Georgia, and despite widespread faculty protest,
Republican Governor Brian Kemp appointed former two-term governor Sonny Perdue to lead the 26-institution
University of Georgia system; its governing board then made it easier to fire tenured professors”. Likewise, Fischer
(2022) notes, “There is a partisan geography to higher ed’s current clashes. ..., recent high-profile controversies over
such issues as mask mandates, critical race theory, and tenure have occurred in states where Republicans control the
governor’s office, the state legislature, or both”.
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corresponding with different phases of faculty governance reforms.

The rest of the paper proceeds as follows. Section 2 provides the setup and identi-

fication results, and their applicability in practice. Section 3 presents the evaluation of

monopsony power in the labor market using our proposed method. Section 4 concludes.

2 Model Identification and Estimation

2.1 Identification

Consider the model

𝑌∗ =𝑈 +𝑉 (1)

𝑊 = 𝛾𝑌∗+𝛽𝑈 +𝑅, (2)

where𝑈,𝑉,𝑅 are unobserved errors with unknown distributions. However, the endoge-

nous variable 𝑌∗ is unobserved, and instead, we observe 𝑌, where 𝑌 = 𝑌∗+ 𝑒. We assume

that 𝑒 is a classical measurement error and maintain the other assumptions in LSZ, such

that𝑈,𝑉,𝑅 and 𝑒 are mutually independent and mean zero.

For example, in returns-to-schooling models, 𝑊 represents wages, 𝑌 is schooling, 𝑈

captures an individual’s unobserved ability, and 𝑒 is the measurement error in educational

attainment.

Substituting out the unobserved 𝑌∗ in equations (1) and (2) yields

𝑌 =𝑈 +𝑉 + 𝑒 (3)

𝑊 = 𝛾𝑌+𝛽𝑈 −𝛾𝑒 +𝑅. (4)

Now we have two common unobserved errors in both equations. Note that the moment

constraint (7) in Lemma 1 of LSZ does not hold without additional assumptions. Even if

𝑈,𝑉,𝑅 and 𝑒 are assumed to be mutually independent, observe that 𝐸[(𝑊 −𝛾𝑌)(𝑊 −𝛾𝑌−
𝛽𝑌)𝑌] = 𝐸(𝛼𝛾𝑒3), which is nonzero unless the distribution of 𝑒 is symmetric, i.e., 𝐸(𝑒3) = 0.
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Similarly, for moment constraint (8) in Lemma 1 in LSZ to hold, it requires 𝐸(𝑒4)= 0. In the

general identification theorem, for higher-order moment conditions in LSZ to continue

holding, all cumulants of 𝑒 of order greater than two must be zero. Such distributional as-

sumptions are unlikely to be satisfied in practice. For example, asymmetric measurement

errors are explicitly considered in Li and Vuong (1998), Bonhomme and Robin (2010), and

Dong, Otsu, and Taylor (2022).

Instead, we show that a different set of moment restrictions hold without imposing

assumptions on the distribution of the measurement error. Substituting (3) into equation

(4) gives:

𝑊 = 𝛾𝑉 +𝛼𝑈 +𝑅, with 𝛼 = 𝛾+𝛽. (5)

We establish the identification of 𝛾 and 𝛼 under the following assumption.

Assumption 1. The joint distribution of random variables 𝑌 and𝑊 is observed. The unobserved

random variables U, V, R and 𝑒 are mean zero and mutually independent.

Proving identification of 𝛾 and 𝛼makes use of the characteristic function representation

of random variables. Below, we formally define the notation used in the main theorem.

Let Φ𝑌(𝜁) ≡ ln𝐸(exp(𝑖𝜁𝑌)), Φ𝑊 (𝜉) ≡ ln𝐸(exp(𝑖𝜉𝑌)) denote the logarithms of marginal

characteristic functions (also known as second characteristic functions or cumulant gener-

ating functions). Similarly, let Φ𝑌,𝑊 (𝜁,𝜉) ≡ ln𝐸(exp(𝑖𝜁𝑌+ 𝑖𝜉𝑊)) represent the log of joint

characteristic function.

The coefficients of a Maclaurin series expansion of the second characteristic function

are cumulants of the distribution. The marginal cumulant of order 𝑗 is thus defined by

𝜅
𝑗

𝑌
= 𝑖−𝑗Φ

(𝑗)
𝑌
(0), where Φ

(𝑗)
𝑌
(0) denotes the 𝑗−th order derivative of Φ𝑌(𝜁) evaluated at 𝜁 = 0

(Lukacs 1970, equation (2.4.2)). Similarly, the joint cumulant of order (𝑗 , 𝑙) is defined as

𝜅
𝑗 ,𝑙

𝑌,𝑊
= 𝑖−(𝑗+𝑙)Φ

(𝑗 ,𝑙)
𝑌,𝑊

(0,0), where Φ
(𝑗 ,𝑙)
𝑌,𝑊

(0,0) represents the mixed partial derivatives of order

(𝑗 , 𝑙) evaluated at 𝜁 = 0 and 𝜉 = 0.
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Theorem 1. Let Assumption 1, equations (3) and (5) hold. Define the moment

𝑔𝑝(𝛼,𝛾) ≡ 𝜅
1+𝑝,3
𝑌,𝑊

−(𝛾+𝛼)𝜅2+𝑝,2
𝑌,𝑊

+𝛼𝛾𝜅
3+𝑝,1
𝑌,𝑊

.

The moment satisfies the constraint

𝑔𝑝(𝛼,𝛾) = 0 (6)

for any 𝑝 ∈ {0,1, . . . }. Moreover, let 𝑞, �̃� ∈ {0,1, . . . } with 𝑞 < �̃�. Assume −∞ < 𝛾 < 𝛼 < ∞. If

the absolute moment of order �̃� exists for 𝑈 , 𝑉 , 𝑅 and 𝑒 and 𝜅
3+�̃� ,1
𝑌,𝑊

𝜅
2+𝑞,2
𝑌,𝑊

−𝜅
3+𝑞,1
𝑌,𝑊

𝜅
2+�̃� ,2
𝑌,𝑊

≠ 0, then

the moment restrictions

𝑔𝑞(𝛼,𝛾) = 0, and 𝑔�̃�(𝛼,𝛾) = 0

point identify the parameters 𝛼 and 𝛾, with 𝛼 being equal to the larger root.

The proof is in Appendix A. Intuitively, the mutual independence assumption allows

the joint characteristic function to be expressed as products of marginal characteristic

function. This makes it possible to represent joint cumulants across different orders (es-

sentially different mixed covariances) as an additively separable function of the marginal

cumulants of unobserved variables of the same orders.

Next, we use the relationships between cumulants and moments4 to derive low-order

moments for constructing GMM estimators.

Lemma 1. Let Assumption 1, equations (3) and (5) hold, then the following two moment con-

straints hold:

𝑐𝑜𝑣[(𝑊 −𝛾𝑌)(𝑊 −𝛼𝑌),𝑌𝑊] =

𝐸
(
𝑊𝑌−𝛾𝑌2

)
𝐸

(
𝑊2 −𝛼𝑌𝑊

)
+𝐸

(
𝑊2 −𝛾𝑌𝑊

)
𝐸

(
𝑊𝑌−𝛼𝑌2

)
(7)

4Expressing cumulants in terms of central moments can be done manually using Faà di Bruno’s formula
or with the mathStatica package in Mathematica.
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𝑐𝑜𝑣[(𝑊 −𝛾𝑌)(𝑊 −𝛼𝑌),𝑌2𝑊] =

2𝐸[(𝑊 −𝛾𝑌)𝑌]𝐸[(𝑊 −𝛼𝑌)𝑌𝑊]+2𝐸[(𝑊 −𝛼𝑌)𝑌]𝐸[(𝑊 −𝛾𝑌)𝑌𝑊]

+𝐸(𝑌2)𝐸[(𝑊 −𝛾𝑌)(𝑊 −𝛼𝑌)𝑊]+𝐸(𝑌𝑊)𝐸[(𝑊 −𝛾𝑌)(𝑊 −𝛼𝑌)𝑌]

+𝐸[(𝑊 −𝛾𝑌)𝑊]𝐸[(𝑊 −𝛼𝑌)𝑌2]+𝐸[(𝑊 −𝛼𝑌)𝑊]𝐸[(𝑊 −𝛾𝑌)𝑌2]. (8)

In particular, we can show that Equations (7) and (8) are equivalent to the moment constraints

𝑔0(𝛼,𝛾) = 0, (9)

𝑔1(𝛼,𝛾) = 0. (10)

Lemma 1 provides two equations in two unknowns, 𝛼 and 𝛾. Assuming 𝛼 > 𝛾, the

moment restrictions in Lemma 1 allow us to point identify 𝛼 and 𝛾.

Based on equation (6), any number of additional moments can be derived and construct

overidentified GMM models. However, in highly overidentified GMM models (where the

number of moments greatly exceeds the number of parameters), it may be preferable to

utilize a subset of the moments for estimation. Guidance from the literature on moment

selection in GMM estimation, such as Andrews and Lu (2001) can be applied. In the

empirical application, we use moment restrictions up to 𝑔2(𝛼,𝛾)= 0 to improve estimation

precision. The full expression of this higher moment is provided in Appendix B.

Note that Theorem 1 and Lemma 1 hold without requiring the distributions of𝑈 ,𝑉 , 𝑅

and 𝑒 to be known. Next, we consider the identification of these distributions, which may

be of economic interest themselves. For example, recovering variances of unobservables

can help determine how much of the error variance is driven by unobserved common

factor𝑈 compared to other idiosyncratic terms.

Corollary 1. Let Assumption 1, equations (3) and (5) hold. Assume that 𝑒 is unobserved with

known distribution,𝑈 ,𝑉 and 𝑅 are unobserved with unknown distributions, and the characteristic

functions of 𝑈 , 𝑉 and 𝑅 are nonvanishing everywhere. If 𝛼 and 𝛾 are point identified, then the

distributions of𝑈 , 𝑉 and 𝑅 are point identified.

The proof is provided in Appendix A. We apply a slight variant of Kotlarski’s lemma
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to the joint distribution of𝑌 and (𝑊 −𝛼)/(𝛾−𝛼) to prove identification of the distributions

of𝑈 , 𝑉 and 𝑅. However, the independence assumptions required for Kotlarski’s identity

do not hold due to the presence of 𝑒 (with different slope coefficients) in both 𝑌 and

(𝑊 − 𝛼)/(𝛾− 𝛼) equations. Specifically, without additional restrictions, the distributions

of the unobservables are not point identified under only Assumption 1.

To retrieve identification of 𝑈 , 𝑉 and 𝑅, we impose the extra assumption that the

distribution of 𝑒 is known, allowing us to derive Kotlarski’s identity with an additional

term. While assuming a known distribution for 𝑒 may seem restrictive, it can be justified

in certain practical contexts. For instance, when the true measure of the regressor is unob-

served in the main sample but available in a second sample alongside the contaminated

measure, the distribution of 𝑒 can be estimated from the auxiliary sample. If the measure-

ment errors in both samples share the same distribution, we can estimate the distribution

from the auxiliary sample and use it in the main sample to obtain identification of other

unobservables.

When using lower moments (7) and (8) to identify the model, the extra assumption on

𝑒 effectively serves the role of a scale normalization. Specifically, the variance of 𝑒 can first

be normalized to a known constant, after which the variance and skewness of the other

unobservables, along with 𝛼 and 𝛾, can be estimated.

2.2 A Vector of Common Latent Variables

We now consider a more general version of the model where the unobservables consist

of multiple latent variables. Let {𝑈1 . . .𝑈𝐾} denote a set of unobservables indexed by 𝑘.

Consider the model

𝑌 =

𝐾∑
𝑘=1

𝑈𝑘 +𝑉, 𝑊 = 𝛾𝑌+
𝐾∑
𝑘=1

𝛽𝑘𝑈𝑘 +𝑅,
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which can be rewritten as

𝑌 =

𝐾∑
𝑘=1

𝑈𝑘 +𝑉, 𝑊 =

𝐾∑
𝑘=1

𝛼𝑘𝑈𝑘 +𝛾𝑉 +𝑅. (11)

The model of mismeasured endogenous variable in section 2.1 is a special case with

𝐾 = 2, 𝛼1 = 𝛼 and 𝛼2 = 0, or 𝛽2 = −𝛾. When 𝛽1 = · · · = 𝛽𝐾 , the model reduces to the one

considered in LSZ. In other words, assuming a scalar common latent variable is equivalent

to assuming that all unobserved common factors affect the outcome variable to the same

extent.

This general model is applicable to many empirical settings. For example, Jia, Huang,

and Zhao (2024) use LSZ’s method to estimate a model relating firms’ output to foreign

equity investment and note that unobservables can include various factors such as CEO

ability, development strategies, innovation, etc.

We now formally state our identification theorem of the general model.

Assumption 2. Assume that the joint distribution of random variables 𝑌 and𝑊 is observed. The

unobserved random variables𝑈1, . . . ,𝑈𝐾 , 𝑉 , and 𝑅 are mean zero and mutually independent.

Theorem 2. Let Assumption 2 and model (11) hold. Let

𝑔𝑝(𝛼1, . . . ,𝛼𝐾 ,𝛾)

≡ 𝜅
1+𝑝,3
𝑌,𝑊

−
(∑
𝑘

𝛼𝑘 +𝛾

)
𝜅

2+𝑝,2
𝑌,𝑊

+
( ∑

1≤𝑚<𝑛≤𝐾
𝛼𝑚𝛼𝑛 +𝛾

∑
𝑘

𝛼

)
𝜅

3+𝑝,1
𝑌,𝑊

−
∏
𝑘

𝛼𝑘𝛾𝜅
4+𝑝
𝑌

.

For any 𝑝 ∈ {0,1, . . . },
𝑔𝑝(𝛼1, . . . ,𝛼𝐾 ,𝛾) = 0. (12)

Let Θ be a bounded set and 𝜃 ≡ (𝛼1, . . . ,𝛼𝐾 ,𝛾) ∈Θ. Define a mapping 𝐹(𝜃) : Θ→ 𝐹(Θ) such that

𝐹(𝜃) ≡ [(𝑔0(𝜃), . . . , 𝑔𝐾(𝜃))′]. Assume that the Jacobian matrix 𝜕𝐹(𝜃)/𝜕𝜃′ has full rank for every

𝜃 ∈ Θ and the image 𝐹(Θ) is simply connected. Then 𝜃 = (𝛼1, . . . ,𝛼𝐾 ,𝛾) is globally identified

over Θ.

The proof is provided in Appendix A. Higher-order relations between cumulants of
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observed and unobserved variables are used to establish equation (12). These moment

constraints are then employed to identify {𝛼1, . . . ,𝛼𝐾 ,𝛾} under rank conditions that ensure

a unique solution. More specifically, identification is achieved by applying a version of

Hadamard’s global inverse function theorem. Similar arguments have been used in other

studies to establish global identification, such as Chernozhukov and Hansen (2006) and

Han and Vytlacil (2017). To see what the assumptions entail, consider the mismeasured

endogenous regressor model from the previous section. The full rank Jacobian assumption

requires that 𝜅3,1
𝑌,𝑊

𝜅3,2
𝑌,𝑊

−𝜅4,1
𝑌,𝑊

𝜅2,2
𝑌,𝑊

≠ 0 and rules out {𝜃 : 𝛼 = 𝛾} (i.e., {𝜃 : 𝛽 = 0}) in the

parameter space. The assumption that the space 𝐹(Θ) is simply connected implies that it is

path-connected, and any loop within the space can be continuously contracted to a single

point without leaving the space. This corresponds to the condition that −∞ < 𝛾 < 𝛼 < ∞
(or −∞ < 𝛼 < 𝛾 <∞) in Theorem 1.

As in Lemma 1, the covariance of product of𝑊 −𝛾𝑌 and𝑊 −𝛼𝑘𝑌 terms with𝑊𝑌 𝑗 can

be used as moments to construct GMM estimators.

In the general model, even when the coefficients are identified, the distributions of

unobservables are generally not point identified given that the number of unknown vari-

ables is far greater than the number of observed variables.5 However, similar to Corollary

1, these distributions can be characterized up to normalizations. To formalize this idea,

we apply Theorem 2.2 in Rao (1971) to our framework:

Corollary 2. Let Assumption 2 and model (11) hold. Assume that (𝛼1, . . . ,𝛼𝐾 ,𝛾) are identified,

𝛼𝑘 ≠ 𝛼 𝑗 for 𝑘 ≠ 𝑗 and 𝛼 ≠ 𝛾, and the characteristic function of (𝑌,𝑊) is specified and does not

vanish anywhere. Let 𝜙𝑈𝑘
, 𝑓𝑈𝑘

be two alternative possible characteristic functions of 𝑈𝑘 , then

𝜙𝑈𝑘
(𝜉) = 𝑓𝑈𝑘

(𝜉)exp(𝑃𝐾(𝜉)), where 𝑃𝐾(𝜉) is a polynomial in 𝜉 of degree ≤ 𝐾. Similarly, let

𝜙𝑉 , 𝑓𝑉 and 𝜙𝑅 , 𝑓𝑅 be two alternative possible characteristic functions of𝑉 and 𝑅, receptively, then

𝜙𝑉(𝜉) = 𝑓𝑉(𝜉)exp(𝑃𝐾(𝜉)) and 𝜙𝑅(𝜉) = 𝑓𝑅(𝜉)exp(𝑃𝐾(𝜉)).
5As shown in Rao (1971), under the framework of model (11) with known coefficients, the joint distribution

of two observed variables (𝑌,𝑊) can identify the distributions of at most three unobserved variables, up to
location.
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2.3 Moments with Covariates

Here we derive the moments required for identification of the model in section 2.1 with

covariates. Assume 𝑋 is a 𝐾 vector of covariates. The model with covariates is

𝑌 = 𝛿′𝑋 +𝑈 +𝑉 + 𝑒 (13)

𝑊 = 𝛾𝑌+𝜏′𝑋 +𝛽𝑈 −𝛾𝑒 +𝑅 (14)

where 𝛿 and 𝜏 are vectors of coefficients, which include constant terms.

Define �̃�, �̃� , 𝑄, and 𝑃 by

�̃� = 𝑌− 𝛿′𝑋, �̃� =𝑊 −(𝛾𝛿+𝜏)′𝑋,

𝑄 =𝑊 −𝛾𝑌−𝜏′𝑋, 𝑃 =𝑊 −(𝛾+𝛽)𝑌+(𝛽𝛿−𝜏)′𝑋.

We can extend moment conditions in Lemma 1 to incorporate covariates and construct

the following moments for GMM estimation:

0 = 𝐸[𝑄𝑃(�̃��̃� −𝜇�̃��̃�)]−𝐸[𝑄�̃�]𝐸[𝑃�̃�]−𝐸[𝑄�̃�]𝐸[𝑃�̃�],

0 = 𝐸[𝑄𝑃(�̃�2�̃� −𝜇�̃� �̃��̃�)]−2𝐸[𝑄�̃�]𝐸[𝑃�̃��̃�]−2𝐸[𝑃�̃�]𝐸[𝑄�̃��̃�]−𝐸[�̃�2]𝐸[𝑄𝑃�̃�]−𝐸[�̃��̃�]𝐸[𝑄𝑃�̃�]

−𝐸[𝑄�̃�]𝐸[𝑃�̃�2]−𝐸[𝑃�̃�]𝐸[𝑄�̃�2],

along with

𝐸[�̃��̃� −𝜇�̃��̃�] = 0, 𝐸[�̃�2�̃� −𝜇�̃� �̃��̃�] = 0, 𝐸[𝑄𝑋] = 0, and 𝐸[�̃�𝑋] = 0,

Using above equations, the parameters (𝛾,𝛽, 𝛿,𝜏,𝜇�̃��̃� , 𝜇�̃� �̃��̃�) are estimated via a standard

GMM estimation approach.

3 Application: Monopsony in Academia

In this section, we evaluate monopsony power in the academic labor market within a pub-

lic university system that underwent significant faculty governance reforms during the

13



sample period—the University System of Georgia (USG). We begin with a brief introduc-

tion to monopsony theory and outline the ’separation-based’ approach used to estimate

the wage elasticity of separations, labor supply elasticity, and the exploitation rate—a

common measure of monopsony power. We followed by discussing challenges in the

empirical analysis, including the endogenous and mismeasured salary variable and the

absence of commonly used salary scale instruments (IVs) for the endogenous regressor,

making this a well-suited example to illustrate the application of our method. Next, we

describe the data and present the estimation results, comparing them to those obtained

using standard methods.

3.1 Conceptual and Empirical Model

The idea of firms’ wage-setting power dated back to Robinson (1933), who first docu-

mented that geographical isolation, workers’ idiosyncratic preferences, and information

frictions can result in market failures and an upward-sloping labor supply curve to the

firm, giving them power to exert influence upon the wage paid to workers. This idea has

been further developed by Manning (2003a), who demonstrated that firms can be monop-

sonists despite the existence of many competitors in a frictional labor market. Manning’s

framework has been employed in the analysis of monopsony power for several labor mar-

kets (Matsudaira 2014; Ransom and Sims 2010, among others), including the labor market

of university professors (Yu and Flores-Lagunes 2024). In such framework, the extent of

the monopsony power depends on the wage elasticity of labor supply faced by the em-

ployer. To see this, consider that the university optimally chooses the employment level

(𝑁) to minimize the total labor cost, given the revenue-maximizing level of production.

The cost minimization problem can be written as:

min
𝑁

𝑤(𝑁)𝑁, 𝑠.𝑡. 𝑌(𝑁) = �̄� (15)
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where𝑤(𝑁)denotes the wage level and𝑌(𝑁) represents the production function.6 Solving

Equation (15), we obtain the following key relationship,

𝐸 =
MRP−𝑤

𝑤
=

1
𝜀

(16)

Equation (16) links the rate of exploitation (E), a common index for measuring the extent

of monopsony power, which is defined as (𝑀𝑅𝑃 −𝑤)/𝑤, to the wage elasticity of labor

supply, 𝜀 = 𝜕𝑁
𝜕𝑤

𝑤
𝑁 (Ashenfelter et al. 2022). In a perfectly competitive market, as the labor

supply is perfectly elastic (𝜀 =∞), the university possesses no monopsony power and pays

faculty members the equivalent of their marginal revenue product (MRP), i.e., 𝑤 = MRP.

Alternatively, if 𝜀 = 5, the rate of exploitation rate is 20% and the university pays faculty

members 80% of their MRP.

Credibly estimating 𝜀 becomes the pillar of empirical analyses on the monopsony

power. Researchers has proposed several estimation strategies to quantify 𝜀 in various

empirical settings (see Sokolova and Sorensen 2021, for a review). A canonical model,

proposed by Manning (2003a), leverages the linear relationship between 𝜀 and the wage

elasticity of recruits (𝜀𝑟) and the wage elasticity of separations (𝜀𝑠) in the steady state, i.e.,

𝜀 = 𝜀𝑟 − 𝜀𝑠 . Under the assumption that in the steady state, one university’s recruits by

offering higher wages should be another university’s quits (i.e., 𝜀𝑟 = −𝜀𝑠), one can show

that 𝜀 = −2𝜀𝑠 . Therefore, 𝜀 can be obtained by estimating 𝜀𝑠 .

To estimate the wage elasticity of separations to the university (𝜀𝑠), we consider the

following model:

𝑆𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛𝑖 = 𝛾 ln𝑆𝑎𝑙𝑎𝑟𝑦∗𝑖 +𝜏′𝑋𝑖 + 𝜖𝑖 (17)

where 𝑆𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛𝑖 is a dummy indicator which equals unity if faculty member 𝑖 left the

university of employment during the sample period. ln𝑆𝑎𝑙𝑎𝑟𝑦∗
𝑖

denotes the logarithm

of salaries, measured by the average annual salary of faculty member 𝑖 during his/her

employment period at the university from 2010 to 2022. 𝜖𝑖 denotes the error term in

the separation equation. We include a rich set of covariates (𝑋𝑖) to control for faculty

6In the context of non-profit-maximizing organizations, one can think of the production function as the
production of educational services or faculty members’ research output.
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attributes, work experience, educational background, and research ability. These variables

are defined and discussed in detail in the Data section (see Section 3.2). The wage elasticity

of separation 𝜀𝑠 is then estimated by 𝛾 divided by the sample mean separation rate 𝑠.

Salaries are widely acknowledged as endogenous in the separation equation. Despite

extensive controls for observables, omitted variables may still be a concern. For instance,

while the model controls for research ability via publication metrics, it does not account

for other productivity aspects, such as teaching and service, which likely correlate with

separation probability. The salary variable is also subject to measurement error (denoted

as 𝑒𝑖). While salary records provide a snapshot of earnings, they do not capture the

full picture of take-home income, which may include benefits, allowances, and external

research funding. Moreover, faculty salaries are measured by the calendar year, whereas

the recruitment in academia is typically based on the academic year. Such discrepancy

might cause fluctuations in annual salaries during hiring years, which likely introduces

measurement error into the salary variable.

Given the endogenous and mismeasured salary variable, the observed salaries (de-

noted as ln𝑆𝑎𝑙𝑎𝑟𝑦𝑖 , measured in logarithm) can be written as:

ln𝑆𝑎𝑙𝑎𝑟𝑦∗𝑖 = ln𝑆𝑎𝑙𝑎𝑟𝑦𝑖 − 𝑒𝑖

ln𝑆𝑎𝑙𝑎𝑟𝑦𝑖 = 𝛿′𝑋𝑖 +𝑈𝑖 +𝑉𝑖 + 𝑒𝑖

and the separation equation is given by:

𝑆𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛𝑖 = 𝛾 ln𝑆𝑎𝑙𝑎𝑟𝑦∗𝑖 +𝜏′𝑋𝑖 +𝛽𝑈𝑖 +𝑅𝑖

where 𝑈𝑖 captures the common factor that simultaneously determines salaries and sep-

arations. 𝑉𝑖 represents the unobservables that are specific to salaries, and 𝑅𝑖 denotes

the error term that only enters the separation equation, i.e., the unobservables specific to

the separation variable.7 Plugging the observed salary function back into the separation

7Therefore, the error term 𝜖𝑖 in Equation (17) equals 𝛽𝑈𝑖 +𝑅𝑖 .
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equation, the model becomes:

𝑆𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛𝑖 = 𝛾 ln𝑆𝑎𝑙𝑎𝑟𝑦𝑖 +𝜏′𝑋𝑖 +𝛽𝑈𝑖 +𝑅𝑖 −𝛾𝑒𝑖 (18)

This “separation-based” approach, along with other strategies, typically involves instru-

mental variables to address the endogeneity of wages. However, valid instruments for

wages in academia are rare and sometimes unavailable. For example, labor economists

often use salary scales as instruments for teacher and faculty salaries (e.g., Ransom and

Sims 2010; Hendricks 2015; Leigh 2012; Fitzpatrick 2015). However, such an instrument is

not available for institutions with limited transparency in pay determination, where salary

scales are not publicly accessible. This is the case for the University System of Georgia.

The endogenous salary variable, the lack of ideal IVs, and the measurement error in the

salary variable make this a well-suited application for the technique developed in this

paper.

3.2 Data

This empirical application leverages a unique and comprehensive faculty-level dataset on

the public university system of Georgia, focusing on three primary research universities

in the University System of Georgia: University of Georgia, Georgia State University,

and Georgia Institute of Technology. The dataset combines 13 years of individual faculty

salary records from 2010 to 2022 with faculty demographics, educational backgrounds

and professional experience obtained through online searching, and publication metrics

scraped from Google Scholar. Administrative salary data for all tenure-track faculty

members at these universities were extracted from Georgia’s Open Government Data

Portal.8 Utilizing each faculty member’s full name, title, and department and university of

employment, we conducted online searches to gather information on gender, educational

history, and work experience from faculty websites, CVs, and LinkedIn profiles. We further

retrieved data on research productivity by searching each faculty member’s Google Scholar

8Data source: Open Georgia, https://open.ga.gov/.
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page and extracting their publication metrics, including the total number of citations and

H-index.

Our sample consists of 4289 tenure-track faculty affiliated with the aforementioned

three USG institutions from 2010 to 2022. We exclude faculty who passed away, retired,

or were fired during the sample period, as they are regarded as “natural death” and

“involuntarily” separations.9

We control for faculty attributes including job title (𝑇𝑖𝑡𝑙𝑒), field of specialization

(𝐹𝑖𝑒𝑙𝑑), gender (𝐹𝑒𝑚𝑎𝑙𝑒), and citizenship (𝐹𝑜𝑟𝑒𝑖𝑔𝑛𝐵𝑜𝑟𝑛).10 Four variables are created

to control for confounding factors related to faculty’s experience. 𝑌𝑟𝑠𝑆𝑖𝑛𝑐𝑒𝐺𝑟𝑎𝑑 de-

notes the number of years since the faculty member graduated from the last degree.

𝐴𝑛𝑦𝑃𝑜𝑠𝑡𝑑𝑜𝑐 represents a dummy variable indicating any postdoctoral experience of the

faculty member. 𝑌𝑟𝑠𝑃𝑜𝑠𝑡𝑑𝑜𝑐 counts the total number of years of the post-doctoral expe-

rience, and 𝐸𝑣𝑒𝑟𝐴𝑑𝑚𝑖𝑛 denotes a binary indicator that equals one if the faculty member

ever served as dean, provost, director, or chair of a department. For educational back-

ground, we construct four binary indicators: 𝐺𝑃ℎ𝐷 and 𝐺𝑈𝑛𝑑𝑒𝑟𝑔𝑟𝑎𝑑 flag whether the

faculty member is an undergraduate or graduate alumni of the three Georgia univer-

sities, while 𝐹𝑜𝑟𝑒𝑖𝑔𝑛𝑃ℎ𝐷 and 𝐹𝑜𝑟𝑒𝑖𝑔𝑛𝑈𝑛𝑑𝑒𝑟𝑔𝑟𝑎𝑑 signify whether the faculty member

obtained Ph.D. or Bachelor’s from foreign institutions. Lastly, we use the logarithm of

H-index (𝑙𝑛𝐻𝑖𝑛𝑑𝑒𝑥) and the logarithm of the total number of citations (𝑙𝑛𝐶𝑖𝑡𝑎𝑡𝑖𝑜𝑛) as

two measures of research productivity.11

Table 1 summarizes descriptive statistics of the outcome variable 𝑆𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛, the

9Since faculty layoffs are usually a result of violations of law or university policy, such as involvement
in a sexual harassment lawsuit, we identify them by checking university and local news. Retirements are
confirmed by checking the department’s website, such as looking for the “Emeritus” status. Deaths are
verified by checking memorials, university news, and other online sources.
10We infer faculty members’ field of specialization by their working department or school. We classified

the field into 9 main groups based on the National Survey of Student Engagement (NSSE)’s major field
categories. They are Arts & Humanities (including Communications and Media), Biological Sciences,
Physical Sciences, Math & Computer Sciences (CS), Social Sciences & Education, Business, Engineering,
Social Service Professions, Health Professions, and Others. For citizenship, we do not directly observe
faculty’s nationality from our data. Alternatively, we use the country where faculty members received their
undergraduate degree as a proxy.
11H-index, proposed by Hirsch (2005), is a publication metric that measures the citation impact of the

publications. It has been commonly used in academia as an indicator of the productivity of scholars.
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salary variable ln𝑆𝑎𝑙𝑎𝑟𝑦, and the covariates previously described. The average annual

salary ranges from $38,500 to $877,880, with the mean at $133,472.14. Separation rate is

about 0.25. 35% of faculty members are female and 32% are foreign-born. Our sample

consists of 47% full professors, 28% associate professors, with the remaining 24% being

assistant professors. We further exclude observations with missing values on graduation

year, length of postdoctoral experience, and publication statistics. The final dataset used

contains 3,002 tenure-track faculty members.12

3.3 Results

We start by estimating Equation (18) using the method of Lewbel, Schennach, and Zhang

(2024) (henceforth LSZ estimator) and the method developed in this paper (henceforth

LSZ-error estimator), comparing with estimates using the simple OLS. We present in Table

2 the results of 𝛾, 𝛽, and the estimated labor supply elasticity 𝜀, along with the correspond-

ing rate of exploitation (E) for OLS (in Panel A), LSZ estimator (in Panel B), and LSZ-error

estimator (in Panel C). Columns (1), (4), and (8) show the results from the baseline model.

It controls for gender, research ability, and years since graduation variables. We subse-

quently include additional controls for field, title, university, and citizenship indicators

in Columns (2), (5), and (8), and educational and experience controls in Columns (3), (6),

and (9). Failing to address the endogeneity and measurement error concerns, the OLS

estimates of 𝛾 are generally small in magnitude, though statistically different from zero.

They imply a small labor supply elasticity and hence suggest significant exploitation rates.

For example, in our preferred model with a full set of controls, the labor supply elasticity

is estimated at only 0.69, predicting an exploitation rate as high as 150%. Accounting

for endogenous salaries, the LSZ estimator suggests a significantly higher labor supply

elasticity, with the estimated 𝛾 increasing from −0.08 to −0.8. The labor supply elastic-

ity is estimated at approximately 6.5 in the preferred model, which is about ten times

12Among these 4289 faculty members, 1247 do not have Google Scholar accounts and hence miss publication
statistics, 10 lack information about the length of postdoctoral experience, and 127 lack the graduation year
of their highest degree.
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larger than that obtained from the simple OLS model. This implies an exploitation rate of

about 15%, suggesting that faculty members are paid approximately 15% less than their

marginal revenue product. Panel C suggests that the estimated labor supply elasticities in

Panel B are likely overstated, which consequently leads to an underestimated exploitation

rate.13 Taking into consideration both endogeneity and measurement error, Column (9)

reports the estimated 𝛾 at −0.34, with the corresponding labor supply elasticity estimated

at around 3 and the exploitation rate at 36%.

Table 2 provides robust evidence of monopsony power within the University System

of Georgia. It’s worth noting that the estimated monopsony power among the three

USG institutions appears to be significantly higher than the national average and than

that of universities in a blue state. For example, based on the IV strategy, Goolsbee and

Syverson (2023) find that, on average, the labor supply elasticity for tenure-track faculty

in U.S. higher education is about 5—equivalent to an exploitation rate of 20%, while Yu

and Flores-Lagunes (2024) find that the exploitation rate for the University of California

system is about 7%. Both of these numbers are substantially smaller than the level of

monopsony power in the USG. Such differences may be associated with several factors,

including the adoption of different estimation methods, institutional policies, labor union

presence and power, and transparency in the compensation determination process.14 15

13In other words, the LSZ estimate may be more biased relative to the true exploitation rate than the
LSZ-error estimate.
14To gauge the extent to which this difference is related to the methodological differences, we conduct a

supplementary analysis comparing 2SLS, LSZ, and LSZ-error estimates using the University of California
data from Yu and Flores-Lagunes (2024). The results are summarized in Appendix Table D.1. As previously
discussed, based on the 2SLS estimation, monopsony power is estimated at 7%. Without IVs, the LSZ
estimate implies an exploitation rate of 15%, while, further accounting for measurement error, the LSZ-error
estimate yields a rate of 13%. Overall, the LSZ-error estimate is closer to the 2SLS estimate compared to
the LSZ estimate, highlighting the necessity of accounting for measurement error. Moreover, given the
same method, the estimated monopsony power is substantially greater for the USG than for the University
of California System. In other words, the methodological differences may not be the primary factors
contributing to the differential monopsony power across institutions.
15The influence of institutional patterns and faculty governance policies on monopsony could be a fruitful

area for future research. Recent research documents that pay disclosure—a policy aimed at increasing pay
transparency—helps reduce pay compression (Mas 2017) and narrow the gender pay gap (Baker et al. 2023;
Bennedsen et al. 2022). Our findings indicate that other aspects of transparency in compensation, such as
transparent standardized salary scales and compensation policies, might also contribute to reducing pay
compression.
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Changes in Monopsony Power Over Time

Examining the evolution of monopsony power over the years, we find a substantial reduc-

tion during the policy-changing period from 2014 to 2019. Figure 1 displays the LSZ-error

estimates of 𝛾 and their 95% confidence intervals, along with the estimated correspond-

ing exploitation rates (indicated by bars) for three time periods: 2010-2013, 2014–2019,

and post-2019. The exploitation rate declined sharply from approximately 28% in the

pre-2014 period to 8% during 2014–2019, before increasing to 24% post-2019.16 The sig-

nificant changes in monopsony power observed from 2014 to 2019 align with a period

of significant policy changes, during which the USG enacted a series of policy revisions

in 2013, 2014, 2016, 2017, and 2018, tightening tenure requirements and strengthening

post-tenure review.17 While these revisions aimed to increase faculty accountability, they

also raised concerns about academic freedom and tenure security, likely contributing to

higher faculty separations.18 This trend of declining monopsony power might have con-

tinued with further tenure policy revisions if not for the impact of COVID-19 at the end

of 2019, which introduced labor market uncertainty, reduced outside options, and helped

universities regain monopsony power under tenure policies that were less favorable to

faculty members.

16Although the estimated gamma for the period from 2014 to 2019 is significantly different from zero, its
standard error is much larger than those of the other periods. This may suggest significant variation in the
elasticity of separations among different faculty groups in response to policy changes during this period.
However, due to the small sample size of the subgroups, it is infeasible to fully explore this hypothesis.
17The Board of Regents, which governs, controls, and manages the University System of Georgia and all

USG institutions, publishes official policies and policy revisions on its website (https://www.usg.edu/
policymanual/policy_revisions/). Policy revisions related to tenure, such as Tenure Requirements, Criteria
for Tenure, and Post-Tenure Review, can be found from November 2013, August 2014, October 2016, October
2017, and May 2018. These revisions established clearer, more rigorous performance standards for tenured
faculty and set additional for tenured faculty who did not meet the performance expectations outlined in
their post-tenure review.
18One way to understand the decline in universities’ monopsony power during this period is to consider it

through the lens of bargaining power. Tenure security is an important amenity associated with the faculty
occupation, and the previously discussed adverse changes in tenure policy tend to significantly reduce
universities’ wage-setting power. These changes are likely reflected in the estimated exploitation rate.
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Heterogeneity of Monopsony Power

Following previous studies, we examine whether faculty members with different ob-

served attributes experience different levels of monopsony power by estimating labor

supply elasticities and exploitation rates across subgroups. We adopt the preferred model

in the main analysis and estimate the exploitation rate separately for each subgroup by

field (with more outside options v.s. fewer options), citizenship (U.S. Born v.s. Non-U.S.

Born), gender (Male v.s. Female), and tenure status (Non-tenured v.s. Tenured), using

LSZ and LSZ-error methods. Results are summarized in the Appendix Figure C.1. Be-

cause dividing the sample by subgroup further reduces the sample size, some of the

estimates lack precision for both the LSZ and LSZ-error methods. Given this, Figure B.1

suggests that the observed monopsony power is primarily driven by faculty members

who are foreign-born, tenured, male, and work in fields with limited outside opportu-

nities beyond academia.19 These findings align with previous studies (e.g., Goolsbee

and Syverson 2023) that found monopsony power to be more pronounced among these

groups. Furthermore, for subgroups in which we obtain a statistically significant gamma,

we observe a consistent pattern: the estimated exploitation rates by LSZ moments (shown

in the blue box) are generally smaller than those estimated by LSZ-error (shown in the

red box), which accounts for measurement error. This once again highlights the need to

address measurement error in estimation to alleviate bias.

4 Conclusion

A mismeasured endogenous regressor is seen in many empirical works. This paper ex-

tends LSZ’s method for identifying linear triangular models by simultaneously account-

ing for endogeneity and measurement errors. Identification is achieved through higher

moments under the assumption that unobserved factors are mutually independent. Low-

19Fields with fewer out-of-academia options consist of: ARTS, HUMANITIES & MEDIA, SOCIAL SCIENCE
& EDUCATION, SOCIAL SERVICE PROFESSIONS, PHYSICAL SCIENCES, MATH, and OTHERS. Fields
with more out-of-academia options includes: BIOLOGICAL SCIENCES, CS, BUSINESS, ENGINEERING,
and HEALTH PROFESSIONS.
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order moments are provided for GMM estimation. Unlike LSZ, this paper relies on a

different set of covariance information, so their results do not encompass ours.

Additional moments can be constructed from moment constraints in Theorem 1 and

Theorem 2, resulting in an overidentified model where tests of overidentifying restrictions

are applicable. While higher order moments tend to generate noisier results, they are use-

ful when instruments and repeated measurements are not available. Conversely, when

standard instruments are available, our proposed moments can be combined with the

exclusion restriction to increase efficiency. Furthermore, we show that once the param-

eters of interest are identified, the distributions of unobservables can be obtained under

normalizations.

Lastly, we illustrate that the proposed method is practically applicable by applying it

to assess universities’ power in setting salaries in the faculty labor market, where faculty

salaries are endogenous, likely mismeasured, and appropriate instrumental variables are

not available for standard IV estimators. Our approach yields robust estimates based

on a data sample of typical size and is easy to implement using standard programming

software, such as Stata. Our analysis shows that ignoring measurement error would

significantly underestimate monopsony power in the sampled Georgia public universities.
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Figure 1: Trends in Monopsony Power
Notes: This figure plots the estimates of 𝛾 and their 95% confidence intervals, based on robust
standard errors, using the LSZ error method. Each bar represents the corresponding exploitation
rate (in %), calculated as the inverse of labor supply elasticity. The estimated labor supply
elasticities are 3.45, 11.8, 4.3 for the pre-2014, 2014-2019, and post-2019 periods, respectively.
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Table 1: Summary Statistics

Variable N Mean Std. Min Max

Salary 4289 133472.14 61637.43 38500 877880
lnSalary 4289 11.71 0.41 11 14
Separation 4289 0.25 0.43 0 1
Female 4289 0.35 0.48 0 1
Foreign Born 4289 0.32 0.47 0 1
Title

Assistant 4287 0.24 0.43 0 1
Associate 4287 0.28 0.45 0 1
Full 4287 0.47 0.50 0 1

Field
Arts & Humanities 4289 0.16 0.36 0 1
Biological Sciences 4289 0.15 0.36 0 1
Physical Sciences, Math, & CS 4289 0.13 0.34 0 1
Social Sciences & Education 4289 0.20 0.40 0 1
Business 4289 0.12 0.33 0 1
Engineering 4289 0.15 0.35 0 1
Social Service Professions 4289 0.02 0.15 0 1
Health Professions 4289 0.05 0.22 0 1
Others 4289 0.02 0.13 0 1

GPhD 4289 0.07 0.26 0 1
GUndergrad 4289 0.04 0.19 0 1
ForeignPhD 4289 0.10 0.30 0 1
ForeignUndergrad 4289 0.32 0.47 0 1
YrsSinceGrad 4162 20.86 10.87 0 60
AnyPostdoc 4288 0.34 0.47 0 1
YrsPostdoc 4279 1.38 2.26 0 16
EverAdmin 4289 0.15 0.35 0 1
lnHindex 3042 3.07 0.77 0 6
lnCitation 3042 7.73 1.54 0 13

Notes: This table reports the summary statistics of the salary, separation, and covariates for the use
sample. YrsSinceGrad denotes the number of years since the faculty member graduated from the last
degree. AnyPostdoc represents a dummy variable indicating any postdoctoral experience of the faculty
member. YrsPostdoc counts the total number of years of the post-doctoral experience. EverAdmin denotes
a dummy indicator that equals one if the faculty member ever served as dean, provost, director, or chair of
a department. GPhD and GUndergrad flag whether the faculty member is an undergraduate or graduate
alumni of the three Georgia universities in our sample. ForeignPhD and ForeignUndergrad signify whether
the faculty member obtained Ph.D. or Bachelor’s from foreign institutions, respectively. lnHindex and
lnCitation denote the logarithm of H-index and the logarithm of the total number of citations, respectively.
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Table 2: Main Results

Panel A. OLS Panel B. LSZ Panel C. LSZ-error

(1) (2) (3) (4) (5) (6) (7) (8) (9)

𝛾 -0.083*** -0.078*** -0.084*** -0.780*** -0.744** -0.804** -0.347*** -0.321** -0.338**
(0.0089) (0.0089) (0.0090) (0.1780) (0.3390) (0.3979) (0.1220) (0.1318) (0.1342)

log(𝛽) -0.234 -0.303 -0.236 0.909* 0.971* 1.078*
(0.2557) (0.5336) (0.5907) (0.5112) (0.5393) (0.5940)

Labor Supply Elasticity 0.671 0.635 0.687 6.320 6.042 6.538 2.810 2.602 2.753
Exploitation Rate 1.491 1.574 1.455 0.158 0.166 0.153 0.356 0.384 0.363
N 3002 3002 3002 3002 3002 3002 3002 3002 3002

Baseline ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Field + Title + Univ. + Foreign ✓ ✓ ✓ ✓ ✓ ✓
Education + Experience ✓ ✓ ✓

Notes: Robust standard errors in parentheses. * p < 0.10, **p < 0.05, *** p < 0.01. This table summarizes the results of 𝛾, 𝛽, and the estimated labor
supply elasticity 𝜀, along with the corresponding rate of exploitation (E) for OLS (Columns 1-3), LSZ estimator (Columns 4-6), and LSZ-error
estimator (Columns 7-9), respectively. Columns (1), (4), and (8) show the results from the baseline model. It controls for gender, research
ability, and years since graduation variables. We subsequently include additional controls for field, title, university, and citizenship indicators in
Columns (2), (5), and (8), and educational and experience controls in Columns (3), (6), and (9).
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Sankhyā: The Indian Journal of Statistics, Series A, 265–270.

Rigobon, Roberto. 2003. Identification through heteroskedasticity. Review of Economics and
Statistics 85:777–792.

Robinson, Joan. 1933. The economics of imperfect competition. Palgrave Macmillan Books.

Sokolova, Anna, and Todd Sorensen. 2021. Monopsony in labor markets: a meta-analysis.
ILR Review 74:27–55.

29



Song, Suyong, Susanne M Schennach, and Halbert White. 2015. Estimating nonseparable
models with mismeasured endogenous variables. Quantitative Economics 6:749–794.

Staiger, Douglas O, Joanne Spetz, and Ciaran S Phibbs. 2010. Is there monopsony in the
labor market? evidence from a natural experiment. Journal of Labor Economics 28:211–
236.

Ura, Takuya. 2018. Heterogeneous treatment effects with mismeasured endogenous treat-
ment. Quantitative Economics 9:1335–1370.

Yu, Zhanhan, and Alfonso Flores-Lagunes. 2024. Monopsony in academia and the gender
pay gap: evidence from california. Working Paper.

30



Online Appendix

A Proof

Proof of Theorem 1. Proof of equation (6) and point identification The joint characteristics

function of (𝑌,𝑊) can be represented by

𝜙𝑌,𝑊 (𝜁,𝜉) = 𝐸
[
exp(𝑖𝜁(𝑈 +𝑉 + 𝑒))exp(𝑖𝜉(𝛼𝑈 +𝛾𝑉 +𝑅))

]
= 𝐸

[
exp(𝑖(𝜁+𝛼𝜉)𝑈)

]
𝐸

[
exp(𝑖(𝜁+𝛾𝜉)𝑉)

]
𝐸

[
exp(𝑖𝜉𝑅)

]
𝐸[exp(𝑖𝜁𝑒)]

= 𝜙𝑈(𝜁+𝛼𝜉)𝜙𝑉(𝜁+𝛾𝜉)𝜙𝑅(𝜉)𝜙𝑒(𝜁),

where the second equality follows because 𝑈,𝑉,𝑅 and 𝑒 are mutually independent. The

cumulant generating function can be written as

Φ𝑌,𝑊 (𝜁,𝜉) = Φ𝑈(𝜁+𝛼𝜉)+Φ𝑉(𝜁+𝛾𝜉)+Φ𝑅(𝜉)+Φ𝑒(𝜁).

Then for any 𝑝 ∈N and 0 ≤ 𝑙 < 3+ 𝑝, we have the following relationship

𝜅
3+𝑝−𝑙 ,𝑙+1
𝑌,𝑊

=

[
𝜕3+𝑝+1Φ𝑌,𝑊 (𝜁,𝜉)
𝑖3+𝑝+1𝜕𝜁3+𝑝−𝑙𝜕𝜉𝑙+1

]
𝜁=0,𝜉=0

= 𝛼𝑙+1𝜅
4+𝑝
𝑈

+𝛾𝑙+1𝜅
4+𝑝
𝑉

. (19)

Equation (19) implies that for 𝑙 = 0,1,2, we have the system of equations

𝜅
3+𝑝,1
𝑌,𝑊

= 𝛼𝜅
4+𝑝
𝑈

+𝛾𝜅
4+𝑝
𝑉

,

𝜅
2+𝑝,2
𝑌,𝑊

= 𝛼2𝜅
4+𝑝
𝑈

+𝛾2𝜅
4+𝑝
𝑉

,

𝜅
1+𝑝,3
𝑌,𝑊

= 𝛼3𝜅
4+𝑝
𝑈

+𝛾3𝜅
4+𝑝
𝑉

.
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We can eliminate 𝜅
4+𝑝
𝑈

and 𝜅
4+𝑝
𝑉

, and combine the above three equations into a single

equation, which is equation (6). Now verifying equation (6), we have

𝜅
1+𝑝,3
𝑌,𝑊

−𝛼2𝜅
3+𝑝,1
𝑌,𝑊

−(𝛾+𝛼)(𝜅2+𝑝,2
𝑌,𝑊

−𝛼𝜅
3+𝑝,1
𝑌,𝑊

)

= 𝛼3𝜅
4+𝑝
𝑈

+𝛾3𝜅
4+𝑝
𝑉

−𝛼2
(
𝛼𝜅

4+𝑝
𝑈

+𝛾𝜅
4+𝑝
𝑉

)
−(𝛾+𝛼)

[(
𝛼2𝜅

4+𝑝
𝑈

+𝛾2𝜅
4+𝑝
𝑉

)
−𝛼

(
𝛼𝜅

4+𝑝
𝑈

+𝛾𝜅
4+𝑝
𝑉

)]
= 𝛼3𝜅

4+𝑝
𝑈

+𝛾3𝜅
4+𝑝
𝑉

−𝛼3𝜅
4+𝑝
𝑈

−𝛼2𝛾𝜅
4+𝑝
𝑉

−(𝛾+𝛼)
(
𝛾2𝜅

4+𝑝
𝑉

−𝛼𝛾𝜅
4+𝑝
𝑉

)
= 𝛼3𝜅

4+𝑝
𝑈

+𝛾3𝜅
4+𝑝
𝑉

−𝛼3𝜅
4+𝑝
𝑈

−𝛼2𝛾𝜅
4+𝑝
𝑉

−𝛾3𝜅
4+𝑝
𝑉

−𝛼𝛾2𝜅
4+𝑝
𝑉

+𝛼𝛾2𝜅
4+𝑝
𝑉

−𝛼2𝛾𝜅
4+𝑝
𝑉

= 0,

which is identical to 𝑔𝑝(𝛼,𝛾) = 0. Now let 𝑞 and �̃� be two different values of 𝑝, we have

𝜅
1+𝑞,3
𝑌,𝑊

−𝛼2𝜅
3+𝑞,1
𝑌,𝑊

−(𝛾+𝛼)
(
𝜅

2+𝑞,2
𝑌,𝑊

−𝛼𝜅
3+𝑞,1
𝑌,𝑊

)
= 0 (20)

𝜅
1+�̃� ,3
𝑌,𝑊

−𝛼2𝜅
3+�̃� ,1
𝑌,𝑊

−(𝛾+𝛼)
(
𝜅

2+�̃� ,2
𝑌,𝑊

−𝛼𝜅
3+�̃� ,1
𝑌,𝑊

)
= 0. (21)

Multiplying (20) by (𝜅2+�̃� ,2
𝑌,𝑊

−𝛼𝜅
3+�̃� ,1
𝑌,𝑊

) yields(
𝜅

1+𝑞,3
𝑌,𝑊

−𝛼2𝜅
3+𝑞,1
𝑌,𝑊

) (
𝜅

2+�̃� ,2
𝑌,𝑊

−𝛼𝜅
3+�̃� ,1
𝑌,𝑊

)
−(𝛾+𝛼)

(
𝜅

2+𝑞,2
𝑌,𝑊

−𝛼𝜅
3+𝑞,1
𝑌,𝑊

) (
𝜅

2+�̃� ,2
𝑌,𝑊

−𝛼𝜅
3+�̃� ,1
𝑌,𝑊

)
= 0. (22)

Replacing (𝛾+ 𝛼)(𝜅2+�̃� ,2
𝑌,𝑊

− 𝛼𝜅
3+�̃� ,1
𝑌,𝑊

) with its value from equation (21) we obtain a single

equation in 𝛼:

−
(
𝜅

3+�̃� ,1
𝑌,𝑊

𝜅
2+𝑞,2
𝑌,𝑊

−𝜅
3+𝑞,1
𝑌,𝑊

𝜅
2+�̃� ,2
𝑌,𝑊

)
𝛼2+

(
𝜅

3+�̃� ,1
𝑌,𝑊

𝜅
1+𝑞,3
𝑌,𝑊

−𝜅
3+𝑞,1
𝑌,𝑊

𝜅
1+�̃� ,3
𝑌,𝑊

)
𝛼+

(
𝜅

1+�̃� ,3
𝑌,𝑊

𝜅
2+𝑞,2
𝑌,𝑊

−𝜅
1+𝑞,3
𝑌,𝑊

𝜅
2+�̃� ,2
𝑌,𝑊

)
= 0,

which can be rewritten as

−𝐹3122𝛼2 +𝐹3113𝛼+𝐹1322 = 0, (23)

where 𝐹𝑎𝑏𝑐𝑑 ≡ 𝜅
𝑎+�̃� ,𝑏
𝑌,𝑊

𝜅
𝑐+𝑞,𝑑
𝑌,𝑊

−𝜅
𝑎+𝑞,𝑏
𝑌,𝑊

𝜅
𝑐+�̃� ,𝑑
𝑌,𝑊

. The roots of equation (23) are

𝛼± =
−𝐹3113 ±

√
𝐹31132 +4𝐹3122𝐹1322

−2𝐹3122 .
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The two roots correspond to the value of 𝛼 and 𝛾. We require 𝜅3+�̃� ,1
𝑌,𝑊

𝜅
2+𝑞,2
𝑌,𝑊

−𝜅
3+𝑞,1
𝑌,𝑊

𝜅
2+�̃� ,2
𝑌,𝑊

≠ 0

to ensure that the denominator 𝐹3122 is not zero.

□

Proof of Lemma 1. Part 1. Proof of equation (7) and (8). Define 𝑄 and 𝑃 as 𝑄 =𝑊 −𝛾𝑌 =

𝛽𝑈 +𝑅−𝛾𝑒 and 𝑃 =𝑊 −𝛼𝑌 = −𝛽𝑉 +𝑅−𝛼𝑒. Then the moments are equivalent to

𝑐𝑜𝑣(𝑄𝑃,𝑌𝑊)−𝐸(𝑄𝑌)𝐸(𝑃𝑊)−𝐸(𝑄𝑊)𝐸(𝑃𝑌) = 0 and

𝑐𝑜𝑣(𝑄𝑃,𝑌2𝑊)−2𝐸(𝑄𝑌)𝐸(𝑃𝑌𝑊)−2𝐸(𝑃𝑌)𝐸(𝑄𝑌𝑊)−𝐸(𝑌2)𝐸(𝑄𝑃𝑊)

−𝐸(𝑌𝑊)𝐸(𝑄𝑃𝑌)−𝐸(𝑄𝑊)𝐸(𝑃𝑌2)−𝐸(𝑃𝑊)𝐸(𝑄𝑌2) = 0.

For the first equation, we have

𝑐𝑜𝑣(𝑄𝑃,𝑌𝑊) = 𝑐𝑜𝑣[(−𝛾𝑒 +𝛽𝑈 +𝑅)(−𝛽𝑉 +𝑅−𝛼𝑒), (𝑈 +𝑉 + 𝑒)(𝛼𝑈 +𝛾𝑉 +𝑅)]

= 𝑐𝑜𝑣(𝛾𝛽𝑒𝑉 −𝛾𝑒𝑅−𝛽2𝑈𝑉 +𝛽𝑈𝑅−𝛼𝛽𝑈𝑒 −𝛽𝑅𝑉 −𝛼𝑒𝑅+𝛾𝛼𝑒2 +𝑅2,

𝛾𝑈𝑉 +𝑈𝑅+𝛼𝑈𝑉 +𝑉𝑅+𝛼𝑒𝑈 +𝛾𝑒𝑉 + 𝑒𝑅+𝛼𝑈2 +𝛾𝑉2)

= 𝑐𝑜𝑣(𝛾𝛽𝑒𝑉 −𝛾𝑒𝑅−𝛽2𝑈𝑉 +𝛽𝑈𝑅−𝛼𝛽𝑈𝑒 −𝛽𝑅𝑉 −𝛼𝑒𝑅,

𝛾𝑈𝑉 +𝑈𝑅+𝛼𝑈𝑉 +𝑉𝑅+𝛼𝑒𝑈 +𝛾𝑒𝑉 + 𝑒𝑅)

= 𝐸(𝛾2𝛽𝑒2𝑉2 −𝛾𝑒2𝑅2 −𝛽2𝛾𝑈2𝑉2 +𝛽𝑈2𝑅2 −𝛼2𝛽𝑒2𝑈2 −𝛽𝑅2𝑉2 −𝛼𝑒2𝑅2 −𝛼𝛽2𝑈2𝑉2),

= 𝛽𝛾2𝐸(𝑒2)𝐸(𝑉2)−𝛾𝐸(𝑒2)𝐸(𝑅2)−𝛽2𝛾𝐸(𝑈2)𝐸(𝑉2)+𝛽𝐸(𝑈2)𝐸(𝑅2)

−𝛼2𝛽𝐸(𝑒2)𝐸(𝑈2)−𝛽𝐸(𝑅2)𝐸(𝑉2)−𝛼𝐸(𝑒2)𝐸(𝑅2)−𝛼𝛽2𝐸(𝑈2)𝐸(𝑉2),

where the equalities follow from Assumption 1. Similarly,

𝐸(𝑄𝑌)𝐸(𝑃𝑊) = 𝐸[(𝛾𝑒 +𝛽𝑈 +𝑅)(𝑈 +𝑉 + 𝑒)]𝐸[(−𝛽𝑉 +𝑅−𝛼𝑒)(𝛼𝑈 +𝛾𝑉 +𝑅)]

= 𝐸(−𝛾𝑒2 +𝛽𝑈2)𝐸(𝛽𝛾𝑉2 +𝑅2)

= 𝛽𝛾2𝐸(𝑒2)𝐸(𝑉2)−𝛾𝐸(𝑒2)𝐸(𝑅2)−𝛽2𝛾𝐸(𝑈2)𝐸(𝑉2)+𝛽𝐸(𝑈2)𝐸(𝑅2)
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𝐸(𝑄𝑊)𝐸(𝑃𝑌) = 2𝐸[(−𝛾𝑒 +𝛽𝑈 +𝑅)(𝛼𝑈 +𝛾𝑉 +𝑅)]𝐸[(−𝛽𝑉 +𝑅−𝛼𝑒)(𝑈 +𝑉 + 𝑒)]

= 𝐸(𝛼𝛽𝑈2 +𝑅2)𝐸(−𝛽𝑉2 −𝛼𝑒2)

= −𝛼𝛽2𝐸(𝑈2)𝐸(𝑉2)−𝛼2𝛽𝐸(𝑈2)𝐸(𝑒2)−𝛽𝐸(𝑅2)𝐸(𝑉2)−𝛼𝐸(𝑒2)𝐸(𝑅2),

therefore

𝑐𝑜𝑣(𝑄𝑃,𝑌𝑊) = 𝐸(𝑄𝑌)𝐸(𝑃𝑊)+𝐸(𝑄𝑊)𝐸(𝑃𝑌).

Similarly, we can verify the second equation:

𝑐𝑜𝑣(𝑄𝑃,𝑌2𝑊) = 𝑐𝑜𝑣[(−𝛾𝑒 +𝛽𝑈 +𝑅)(−𝛽𝑉 +𝑅−𝛼𝑒), (𝑈 +𝑉 + 𝑒)2(𝛼𝑈 +𝛾𝑉 +𝑅)]

= 𝑐𝑜𝑣(𝛾𝛽𝑒𝑉 −𝛾𝑒𝑅+𝛾𝛼𝑒2 −𝛽2𝑈𝑉 +𝛽𝑈𝑅−𝛼𝛽𝑈𝑒 −𝛽𝑅𝑉 +𝑅2 −𝛼𝑒𝑅,

𝛼𝑈3 +𝛼𝑈𝑉2 +𝛼𝑈𝑒2 +2𝛼𝑒𝑈2 +2𝛼𝑒𝑈𝑉 +2𝛼𝑈2𝑉

+𝛾𝑈2𝑉 +𝛾𝑉3 +𝛾𝑒2𝑉 +2𝛾𝑒𝑉𝑈 +2𝛾𝑒𝑉2 +2𝛾𝑈𝑉2

+𝑈2𝑅+𝑉2𝑅+ 𝑒2𝑅+2𝑒𝑈𝑅+2𝑒𝑉𝑅+2𝑈𝑉𝑅)

= 𝐸(𝛾2𝛽𝑒3𝑉2 +2𝛾2𝛽𝑒2𝑉3 −𝛾𝑒3𝑅2 −𝛽2𝛼𝑈2𝑉3

−2𝛽2𝛼𝑈3𝑉2 −𝛽2𝛾𝑈3𝑉2 −2𝛽2𝛾𝑈2𝑉3 +𝛽𝑈3𝑅2

−𝛼2𝛽𝑈2𝑒3 −2𝛼2𝛽𝑒2𝑈3 −𝛽𝑅2𝑉3 +2𝛾2𝛼𝑒3𝑉2

+2𝛼2𝛾𝑒3𝑈2 +𝑅3𝑈2 +𝑅3𝑉2 +𝑅3𝑒2 −𝛼𝑒3𝑅2),

2𝐸(𝑄𝑌)𝐸(𝑃𝑌𝑊) = 2𝐸[(−𝛾𝑒 +𝛽𝑈 +𝑅)(𝑈 +𝑉 + 𝑒)]𝐸[(−𝛽𝑉 +𝑅−𝛼𝑒)(𝑈 +𝑉 + 𝑒)(𝛼𝑈 +𝛾𝑉 +𝑅)]

= 2𝐸(−𝛾𝑒2 +𝛽𝑈2)𝐸(−𝛽𝛾𝑉3)

= 2𝛾2𝛽𝐸(𝑒2)𝐸(𝑉3)−2𝛽2𝛾𝐸(𝑈2)𝐸(𝑉3),

2𝐸(𝑃𝑌)𝐸(𝑄𝑌𝑊) = 2𝐸[(−𝛽𝑉 +𝑅−𝛼𝑒)(𝑈 +𝑉 + 𝑒)]𝐸[(−𝛾𝑒 +𝛽𝑈 +𝑅)(𝑈 +𝑉 +𝑅)(𝛼𝑈 +𝛾𝑉 +𝑅)]

= 2𝐸(−𝛽𝑉2 −𝛼𝑒2)𝐸(𝛼𝛽𝑈3)

= −2𝛼𝛽𝐸(𝑉2)𝐸(𝑈3)−2𝛼2𝛽𝐸(𝑒2)𝐸(𝑈3),
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2𝐸(𝑌𝑊)𝐸(𝑄𝑃𝑌) = 𝐸[(𝑈 +𝑉 + 𝑒)(𝛼𝑈 +𝛾𝑉 +𝑅)]𝐸[(𝛾𝑒 +𝛽𝑈 +𝑅)(𝛽𝑉 +𝑅−𝛼𝑒)(𝑈 +𝑉 + 𝑒)]

= 2𝐸(𝛼𝑈2 +𝛾𝑉2)𝐸(𝛾𝛼𝑒3)

= 2𝛾𝛼2𝐸(𝑈2)𝐸(𝑒3)+2𝛾2𝛼𝐸(𝑉2)𝐸(𝑒3),

𝐸(𝑌2)𝐸(𝑄𝑃𝑊) = 𝐸[(𝑈 +𝑉 + 𝑒)2]𝐸[(𝛾𝑒 +𝛽𝑈 +𝑅)(−𝛽𝑉 +𝑅−𝛼𝑒)(𝛼𝑈 +𝛾𝑉 +𝑅)]

= 𝐸(𝑈2 +𝑉2 + 𝑒2)𝐸(𝑅3)

= 𝐸(𝑈2)𝐸(𝑅3)+𝐸(𝑉2)𝐸(𝑅3)+𝐸(𝑒2)𝐸(𝑅3),

𝐸(𝑄𝑊)𝐸(𝑃𝑌2) = 𝐸[(−𝛾𝑒 +𝛽𝑈 +𝑅)(𝛼𝑈 +𝛾𝑉 +𝑅)]𝐸[(−𝛽𝑉 +𝑅−𝛼𝑒)(𝑈 +𝑉 + 𝑒)2]

= 𝐸(𝛼𝛽𝑈2 +𝑅2)𝐸(−𝛽𝑉3 −𝛼𝑒3)

= −𝛼𝛽2𝐸(𝑈2)𝐸(𝑉3)−𝛼2𝛽𝐸(𝑈2)𝐸(𝑒3)−𝛽𝐸(𝑅2)𝐸(𝑉3)−𝛼𝐸(𝑅2)𝐸(𝑒3),

𝐸(𝑃𝑊)𝐸(𝑄𝑌2) = 𝐸[(−𝛽𝑉 +𝑅−𝛼𝑒)(𝛼𝑈 +𝛾𝑉 +𝑅)]𝐸[(−𝛾𝑒 +𝛽𝑈 +𝑅)(𝑈 +𝑉 + 𝑒)2]

= 𝐸(−𝛽𝛾𝑉2 +𝑅2)𝐸(−𝛾𝑒3 +𝛽𝑈3)

= 𝛽𝛾2𝐸(𝑉2)𝐸(𝑒3)−𝛽2𝛾𝐸(𝑉2)𝐸(𝑈3)−𝛾𝐸(𝑅2)𝐸(𝑒3)+𝛽𝐸(𝑅2)𝐸(𝑈3).

Part 2. Proof of the equivalence between equations (7), (8) and equations (9) and (10)

Calculating the joint cumulants of the mean zero variables, we have

𝜅1,3
𝑌,𝑊

= 𝐸[𝑊3𝑌]−3𝐸[𝑊𝑌]𝐸[𝑊2]

𝜅3,1
𝑌,𝑊

= 𝐸[𝑊𝑌3]−3𝐸[𝑊𝑌]𝐸[𝑌2]

𝜅2,2
𝑌,𝑊

= 𝐸[𝑊2𝑌2]−𝐸[𝑊2]𝐸[𝑌2]−2𝐸[𝑊𝑌]𝐸[𝑊𝑌]

𝜅1,4
𝑌,𝑊

= 𝐸[𝑊𝑌4]−4𝐸[𝑌3]𝐸[𝑊𝑌]−6𝐸[𝑊𝑌2]𝐸[𝑌2]

𝜅2,3
𝑌,𝑊

= 𝐸[𝑊3𝑌2]−3𝐸[𝑊𝑌2]𝐸[𝑊2]−6𝐸[𝑊2𝑌]𝐸[𝑊𝑌]−𝐸[𝑊3]𝐸[𝑌2]

𝜅3,2
𝑌,𝑊

= 𝐸[𝑊2𝑌3]−3𝐸[𝑊2𝑌]𝐸[𝑌2]−6𝐸[𝑊𝑌2]𝐸[𝑊𝑌]−𝐸[𝑌3]𝐸[𝑊2]

35



Now we start from equation (9),

0 = 𝜅1,3
𝑌,𝑊

−𝛼2𝜅3,1
𝑌,𝑊

−(𝛾+𝛼)(𝜅2,2
𝑌,𝑊

−𝛼𝜅3,1
𝑌,𝑊

)

= 𝜅1,3
𝑌,𝑊

−𝛾
(
𝜅2,2
𝑌,𝑊

−𝛼𝜅3,1
𝑌,𝑊

)
−𝛼𝜅2,2

𝑌,𝑊

= 𝐸[𝑊3𝑌]−3𝐸[𝑊𝑌]𝐸[𝑊2]

−𝛾(𝐸[𝑊2𝑌2]−𝐸[𝑊2]𝐸[𝑌2]−2𝐸[𝑊𝑌]𝐸[𝑊𝑌]−𝛼(𝐸[𝑊𝑌3]−3𝐸[𝑊𝑌]𝐸[𝑌2]))

−𝛼(𝐸[𝑊2𝑌2]−𝐸[𝑊2]𝐸[𝑌2]−2𝐸[𝑊𝑌]𝐸[𝑊𝑌]),

which is equivalent to equation (7). Reorganizing equation (7) we get the moment to

construct the GMM estimator:

0 = 𝐸[(𝑊2 −𝛾𝑊𝑌−𝛼𝑊𝑌+𝛼𝛾𝑌2)𝑊𝑌−(𝑊2 −𝛾𝑊𝑌−𝛼𝑊𝑌+𝛼𝛾𝑌2)𝜇𝑤𝑦

−(𝜇𝑤𝑦 −𝛾𝜇𝑦𝑦)(𝑊(𝑊 −𝛼𝑌))− (𝜇𝑤𝑤 −𝛾𝜇𝑤𝑦)((𝑊 −𝛼𝑌)𝑌)],

with 𝐸[𝜇𝑤𝑤 −𝑊2] = 0, 𝐸[𝜇𝑦𝑦 −𝑌2] = 0 and 𝐸[𝜇𝑤𝑦 −𝑊𝑌] = 0. Similarly, we can establish

equation (8) from equation (10). □

Proof of Corollary 1. Denote

𝑍 ≡ 𝑊 −𝛼𝑌
𝛾−𝛼

=𝑉 + 1
𝛾−𝛼

𝑅− 𝛼
𝛾−𝛼

𝑒.

𝜙𝑌,𝑍(𝜁,𝜉) = 𝐸
[
exp (𝑖𝜁 (𝑈 +𝑉 + 𝑒))exp

(
𝑖𝜉

(
𝑉 + 1

𝛾−𝛼
𝑅− 𝛼

𝛾−𝛼
𝑒

))]
= 𝜙𝑈(𝜁)𝜙𝑉(𝜁+𝜉)𝜙𝑅

(
1

𝛾−𝛼
𝜉

)
𝜙𝑒

(
𝜁− 𝛼

𝛾−𝛼
𝜉

)
(24)

Let 𝜉 = 0, we have

𝜙𝑌,𝑍(𝜁,0) = 𝜙𝑈(𝜁)𝜙𝑉(𝜁)𝜙𝑒(𝜁). (25)

Similarly, let 𝜁 = 0, we have

𝜙𝑌,𝑍(0,𝜉) = 𝜙𝑉(𝜉)𝜙𝑅
(

1
𝛾−𝛼

𝜉

)
𝜙𝑒

(
− 𝛼
𝛾−𝛼

𝜉

)
(26)
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Multiplying equations (24)-(26) yields

𝜙𝑌,𝑍(𝜁,𝜉)𝜙𝑉(𝜁)𝜙𝑉(𝜉)𝜙𝑒(𝜁)𝜙𝑒
(
− 𝛼
𝛾−𝛼

𝜉

)
= 𝜙𝑌,𝑍(𝜁,0)𝜙𝑌,𝑍(0,𝜉)𝜙𝑉(𝜁+𝜉)𝜙𝑒

(
𝜁+ 𝛼

𝛾−𝛼
𝜉

)
.

Let 𝐴(𝜁,𝜉) ≡ 𝜙𝑒(𝜁)𝜙𝑒
(
− 𝛼

𝛾−𝛼𝜉
)
/𝜙𝑒

(
𝜁− 𝛼

𝛾−𝛼𝜉
)
, and it follows that

𝜙𝑉(𝜁+𝜉) =
𝜙𝑌,𝑍(𝜁,𝜉)

𝜙𝑌,𝑍(𝜁,0)𝜙𝑌,𝑍(0,𝜉)
𝜙𝑉(𝜁)𝜙𝑉(𝜉)𝐴(𝜁,𝜉).

The distribution of 𝑒 is known by assumption, and 𝛼 and 𝛾 are identified. Hence the

function 𝐴(𝜁,𝜉) is known. Additionally, 𝐴(0,𝜉) = 1. Recall that Φ(·) ≡ ln𝜙(·), then

Φ𝑉(𝜁+𝜉) = ln
𝜙𝑌,𝑍(𝜁,𝜉)

𝜙𝑌,𝑍(𝜁,0)𝜙𝑌,𝑍(0,𝜉)
+Φ𝑉(𝜁)+Φ𝑉(𝜉)+ ln𝐴(𝜁,𝜉).

Then following the steps of proof in Rao (1992), Remarks 2.1.11, it can be shown that

Φ𝑉(𝑡) = 𝑖𝐸[𝑉]𝑡+
∫ 𝑡

0

𝜕

𝜕𝜁

[
ln

𝜙𝑌,𝑍(𝜁,𝜉)
𝜙𝑌,𝑍(𝜁,0)𝜙𝑌,𝑍(0,𝜉)

]
𝜁=0

𝑑𝜉+
∫ 𝑡

0

𝜕

𝜕𝜁
[ln𝐴(𝜁,𝜉)]𝜁=0 𝑑𝜉

=

∫ 𝑡

0

𝜕

𝜕𝜁

[
ln

𝜙𝑌,𝑍(𝜁,𝜉)
𝜙𝑌,𝑍(𝜁,0)𝜙𝑌,𝑍(0,𝜉)

]
𝜁=0

𝑑𝜉+
∫ 𝑡

0

𝜕

𝜕𝜁
[ln𝐴(𝜁,𝜉)]𝜁=0 𝑑𝜉

Using this relationship one can identify the distribution of 𝑉 . Then one can compute the

distribution of𝑈 and 𝑅 through

𝜙𝑈(𝜁) =
𝜙𝑌,𝑍(𝜁,0)
𝜙𝑉(𝜁)𝜙𝑒(𝜁)

, 𝜙𝑅

(
1

𝛾−𝛼
𝜉

)
=

𝜙𝑌,𝑍(0,𝜉)
𝜙𝑉(𝜉)𝜙𝑒(−𝛼/(𝛾−𝛼)𝜉)

□

Proof of Theorem 2. Under the independence assumption, the cumulant generating func-

tion for the general model is

Φ𝑌,𝑊 (𝜁,𝜉) =
𝐾∑
𝑖=1

Φ𝑈𝑖 (𝜁+𝛼𝑖𝜉)+Φ𝑉(𝜁+𝛾𝜉)+Φ𝑅(𝜉).

For 𝜉 = 0 we have

Φ𝑌(𝜁) =
𝐾∑
𝑖=1

Φ𝑈𝑖 (𝜁)+Φ𝑉(𝜁)
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Then for any 𝑝 ∈ and 0 ≤ 𝑙 < 3+ 𝑝, we have

𝜅
3+𝑝−𝑙 ,𝑙+1
𝑌,𝑊

=

[
𝜕3+𝑝+1Φ𝑌,𝑊 (𝜁,𝜉)
𝑖3+𝑝+1𝜕𝜁3+𝑝−𝑙𝜕𝜉𝑙+1

]
𝜁=0,𝜉=0

=

𝐾∑
𝑖=1

𝛼𝑙+1
𝑖 𝜅

4+𝑝
𝑈𝑖

+𝛾𝑙+1𝜅
4+𝑝
𝑉

. (27)

Equation (27) implies that

𝜅
3+𝑝,1
𝑌,𝑊

=

𝐾∑
𝑖=1

𝛼𝑖𝜅
4+𝑝
𝑈𝑖

+𝛾𝜅
4+𝑝
𝑉

, (28)

𝜅
2+𝑝,2
𝑌,𝑊

=

𝐾∑
𝑖=1

𝛼2
𝑖 𝜅

4+𝑝
𝑈𝑖

+𝛾2𝜅
4+𝑝
𝑉

, (29)

𝜅
1+𝑝,3
𝑌,𝑊

=

𝐾∑
𝑖=1

𝛼3
𝑖 𝜅

4+𝑝
𝑈𝑖

+𝛾3𝜅
4+𝑝
𝑉

. (30)

In addition,

𝜅
4+𝑝
𝑌

=

𝐾∑
𝑖=1

𝜅
4+𝑝
𝑈𝑖

+𝜅
4+𝑝
𝑉

(31)

Observe that:(∑
𝑘

𝛼𝑘 +𝛾

) (
𝐾∑
𝑖=1

𝛼2
𝑖 𝜅

4+𝑝
𝑈𝑖

+𝛾2𝜅
4+𝑝
𝑉

)
=

𝐾∑
𝑖=1

𝛼3
𝑖 𝜅

4+𝑝
𝑈𝑖

+𝛾3𝜅
4+𝑝
𝑉

+
( ∑

1≤𝑚<𝑛≤𝐾
𝛼𝑚𝛼𝑛 +𝛾

∑
𝑘

𝛼

) (
𝐾∑
𝑖=1

𝛼𝑖𝜅
4+𝑝
𝑈𝑖

+𝛾𝜅
4+𝑝
𝑉

)
−

∏
𝑘

𝛼𝑘𝛾

(
𝐾∑
𝑖=1

𝜅
4+𝑝
𝑈𝑖

+𝜅
4+𝑝
𝑉

)
.

Therefore, equation (12) can be established using relations (28) - (31) by eliminating all of

𝜅
4+𝑝
𝑈𝑖

and 𝜅
4+𝑝
𝑉

.

A finite set of moment constraints can be constructed from equation (12). Global identi-

fication is then obtained through the use of Hadamard-Caccioppoli Theorem (Hadamard

(1906) and Caccioppoli (1932)). The theorem states three sufficient conditions for global

invertibility: (i) the mapping is proper, (ii) the Jacobian matrix of the mapping has full
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rank uniformly over the domain, and (iii) codomain of the mapping is simply connected.

We first check that 𝐹(𝜃) is proper: Since 𝐹(𝜃) is a continuous function, the pre-image of a

closed set under 𝐹(𝜃) is closed. If the domain Θ is bounded, the pre-image of a bounded

set is bounded. Therefore, 𝐹(𝜃) is proper. The second and third conditions are satisfied

by assumptions on the parameter space. □

B Over-Identifying Moments

When 𝑝 = 2, the moment in Theorem 1 becomes

𝑔2(𝛼,𝛾) ≡ 𝜅3,3
𝑌,𝑊

−𝛼2𝜅5,1
𝑌,𝑊

−(𝛾+𝛼)(𝜅4,2
𝑌,𝑊

−𝛼𝜅5,1
𝑌,𝑊

),

from which we can construct additional moments to identify the model.

From results in Cook (1951), we express the joint cumulants of mean zero variables in

moments

𝜅5,1
𝑌,𝑊

= 𝐸[𝑌5𝑊]−5𝐸[𝑌4]𝐸[𝑌𝑊]−10𝐸[𝑌3𝑊]𝐸[𝑌2]−10𝐸[𝑌2𝑊]𝐸[𝑊3]+30𝐸[𝑌𝑊]𝐸[𝑌2]𝐸[𝑌2]

𝜅4,2
𝑌,𝑊

= 𝐸[𝑌4𝑊2]−𝐸[𝑌4]𝐸[𝑊2]−8𝐸[𝑌3𝑊]𝐸[𝑌𝑊]−4𝐸[𝑌3]𝐸[𝑌𝑊2]−6𝐸[𝑌2𝑊2]𝐸[𝑌2]

−6𝐸[𝑌2𝑊]𝐸[𝑌2𝑊]+6𝐸[𝑌2]𝐸[𝑌2]𝐸[𝑊2]+24𝐸[𝑌2]𝐸[𝑌𝑊]𝐸[𝑌𝑊]

𝜅3,3
𝑌,𝑊

= 𝐸[𝑌3𝑊3]−3𝐸[𝑌3𝑊]𝐸[𝑊2]−𝐸[𝑌3]𝐸[𝑊3]−9𝐸[𝑌2𝑊2]𝐸[𝑌𝑊]−9𝐸[𝑌2𝑊]𝐸[𝑌𝑊2]

−3𝐸[𝑌2]𝐸[𝑌𝑊3]+18𝐸[𝑌2]𝐸[𝑌𝑊]𝐸[𝑊2]+12𝐸[𝑌𝑊]𝐸[𝑌𝑊]𝐸[𝑌𝑊]

We get the additional moments:

0 = 𝐸[𝑌3𝑊3 −3𝜇𝑤𝑤𝑌3𝑊 −𝜇𝑤𝑤𝑤𝑌
3 −9𝜇𝑦𝑤𝑌2𝑊2 −9𝜇𝑦𝑦𝑤𝑌𝑊2 −3𝜇𝑦𝑦𝑌𝑊3 +18𝜇𝑦𝑦𝜇𝑦𝑤𝑊2

+12𝜇𝑦𝑤𝜇𝑦𝑤𝑌𝑊 −(𝛼+𝛾)(𝑌4𝑊2 −𝜇𝑤𝑤𝑌
4 −8𝜇𝑦𝑤𝑌3𝑊 −4𝜇𝑦𝑤𝑤𝑌3 −6𝜇𝑦𝑦𝑌2𝑊2 −6𝜇𝑦𝑦𝑤𝑌2𝑊

+6𝜇𝑦𝑦𝜇𝑦𝑦𝑊2 +24𝜇𝑦𝑤𝜇𝑦𝑤𝑌2)+𝛼𝛾(𝑌5𝑊 −5𝜇𝑦𝑤𝑌4 −10𝜇𝑦𝑦𝑌3𝑊 −10𝜇𝑦𝑦𝑤𝑊3 +30𝜇𝑦𝑦𝜇𝑦𝑦𝑌𝑊)]

and

𝐸[𝑊3 −𝜇𝑤𝑤𝑤] = 0.
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C Appendix Figures
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C.1: Monopsony Power Across Groups
Notes: This figure plots the estimates of 𝛾 and their 90% confidence intervals, based on robust
standard errors, using both the LSZ method (shown in blue) and the LSZ error method (shown
in red). Each bar represents the corresponding exploitation rate (in %), calculated as the inverse
of labor supply elasticity. Estimates of the exploitation rate are omitted when the estimated 𝛾 is
not statistically significant at conventional levels.
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D Appendix Tables

D.1: Results from the University of California: Comparing 2SLS, LSZ, and LSZ-error

2SLS LSZ LSZ-error
(1) (2) (3)

𝛽 -0.760***
(0.0805)

𝛾 -0.343*** -0.395***
(0.0460) (0.0652)

N 8089 8089 8089

Labor Supply Elasticity 15.144 6.829 7.865
Exploitation Rate 0.066 0.146 0.127

Notes: This table summarizes the estimation results using data from the University of California system,
sourced from Yu and Flores-Lagunes (2024). Column (1) shows the 2SLS estimate (𝛽), adopting university
revenue and salary scales as IVs, and reports the same results as Column (2) of Table 3 in Yu and Flores-
Lagunes (2024). In Columns (2) and (3), we report the LSZ and LSZ-error estimates (𝛾), respectively. The
estimations are based on the same covariates as in Column (1). In the last two rows, we further report the
estimated labor supply elasticity and the computed exploitation rate.
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