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Abstract

Within the framework of Berry (1994) and Berry, Levinsohn, and Pakes

(1995), I prove that market size can be point identified along with all demand

parameters in a random coefficients logit (BLP) model. I require no additional

data beyond what is needed to estimate standard BLP models. Identification

comes from the exogenous variation in product characteristics across markets

and the nonlinearity of the demand system. I apply the method to a merger

simulation in the carbonated soft drinks market in the US, and find that as-

suming a market size larger than the true estimated size would underestimate

merger price increases by 31% on average.
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1 Introduction

Aggregate demand models of differentiated products are crucial for analyzing market

power and firm competition in a wide range of industries. The most widely adopted

estimation approach developed by Berry (1994) and Berry, Levinsohn, and Pakes

(1995) (hereafter referred to as BLP) involves using observed aggregate market shares.

Constructing market shares requires researchers to observe the size of the market.

Market size consists of all observed sales (the inside goods) plus all potential purchases

(the outside goods or no-purchase). Potential purchases are generally unobservable

and are therefore a source of possible mismeasurement of market size.1

Many empirical results are sensitive to market size (see section 1.1 and Supplement

B for details and examples). Yet how to choose market size in demand models has

received limited formal attention in the literature. Table 1 shows that, over the past

six years, around 30 articles published in the top 5 journals used a parametric BLP

demand model. Of these, more than 80% made ad-hoc assumptions on market size

or the outside option, and only 5 out of 24 studies performed a robustness check on

these assumptions. A few researchers have commented on this problem,2 but provide

little guidance on what to do about unobserved or mismeasured market size.

Table 1: Empirical BLP Studies in Top 5 Journals from 2018 to 2024

Number of Empirical BLP
Studies in Top 5 Journals

Studies with Ad-hoc Market
Size Assumptions

Studies Conducting Market
Size Robustness Tests

Count 29 24 5

Note: The top 5 journals refer to the American Economic Review, Econometrica, the Journal of
Political Economy, the Quarterly Journal of Economics, and the Review of Economic Studies.

A common empirical choice is to assume the market size equals the population

of the market times a constant.3 For example, in the demand for soft drinks, this

1For instance, when estimating airline demand, a market is typically defined as an origin-
destination pair of cities. This raises questions about how to determine the number of potential
flyers – whether it comprises only those currently traveling by other means, individuals who might
opt for travel with lower prices, or the entire population of end-point cities, some of whom may
never travel to the destination.

2For example, Berry (1994) says that “issues that might be examined include questions of how
to estimate market size when this is not directly observed”.

3Well-known examples include Nevo (2001), Petrin (2002), Rysman (2004), Berto Villas-Boas
(2007), Berry and Jia (2010), Ho, Ho, and Mortimer (2012), and Ghose, Ipeirotis, and Li (2012). Of
the 29 papers in Table 1, half explicitly assume market size be proportional to an observed measure.
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constant represents the maximum amount an individual can potentially consume,

which is not observed or estimated in general but chosen ad hoc based on institutional

background or consumer behavior. It is important to note that this constant is

not a free normalization as it affects the estimates of preferences and counterfactual

simulations.

This paper shows how to correct for the unknown market size in random coeffi-

cients BLP and other related demand models. For example, in the case where market

size is a constant times the observed population, I provide sufficient conditions to

point identify and estimate this constant along with all the other parameters of the

BLP model. More generally, market size can be point identified and estimated when

it is a general function of observed variables and unknown parameters. So, for exam-

ple, in an airline demand model, market size can be a function of the population in

the origin city, population in the destination city, city characteristics like being a hub

or not, and a vector of unknown parameters that are identified and estimated along

with the rest of the BLP model.

Identification exploits two important features: exogenous variation that shifts

quantities across markets and the nonlinearity of the demand model. It does not

rely on other information such as micro-moments or additional data beyond those

typically used in standard BLP. That is, the results in my paper use the same BLP

parametric assumptions and data as in the 29 empirical applications of Table 1. A

key insight is that any exogenous changes in product characteristics affect the total

sales of inside goods, and the responses of total sales to this variation depends on

the true size of the market. Why does this variation have extra identifying power for

parameters beyond ordinary demand coefficients? In section 3, I show that the log

of product shares in the plain multinomial logit model can be written as a function

linear in product characteristics but nonlinear in market size parameters, making

identification possible. More formally, identification is based on conditional moment

restrictions and full rank conditions. By explicitly computing the associated Jacobian

matrix, I provide low-level assumptions on instruments that serve to joint identify the

market size and demand parameters (including random coefficients).

In practice, researchers often resort to a nested logit model or market fixed effects

to alleviate concerns about unknown market size. However, as I will show, such

practices do not fully eliminate biases. I demonstrate how the method proposed in

this paper is related to, yet distinct from, these commonly used model specifications.
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In the case of a nested logit model with the outside option as a standalone nest, I

show that the nesting parameter governing substitution between inside goods and the

outside option is separately identified from the market size parameter, meaning the

two drive substitution differently (see section 3.4).

For market fixed effects, a plain logit model with market fixed effects identifies

demand parameters, but market size remains unidentified if it is the object of interest.

Moreover, consistently estimating market fixed effects requires the number of products

to approach infinity, and, as Armstrong (2016) shows, standard BLP instruments lose

validity as price instruments when the number of products tends to infinity. More

importantly, in section 4.4, I show that market fixed effects remove bias only in plain

or nested logit models, not in the random coefficients logit model, and the latter is the

main focus of this paper. In principle, market size is separately identified from fixed

effects – in other words, the market size model is still identifiable in a specification

that includes market fixed effects.

In addition to proving these identification results, I also (a) derive the bias caused

by mismeasured market size; (b) establish a test based on linear regression to detect

the relevance of instruments; (c) show identification in models where market size is an

unknown function of observed variables; (d) provide stronger conditions that permit

point identification and estimation of market size, even when the demand model is

not known or nonparametric (e.g., in Berry and Haile (2014)’s nonparametric BLP

framework), which allows for testing market size specifications without estimating

the demand model; (e) show that a special case of nonparametric estimation of ran-

dom coefficients is equivalent to estimating the market size, but it requires imposing

particular assumptions on the distribution of random coefficients.

Based on these identification results, I apply the proposed method to a merger

simulation of carbonated soft drink companies. In the merger analysis, I use both

the proposed method and the standard BLP to estimate demand, while assuming a

Bertrand competition among firms. Using the estimated market size of 12 servings

per week, I predict a price effect that is 31% higher compared to the literature’s

assumption of 17 servings per week. This market size estimate also suggests that

defining market size based on per capita consumption of all non-alcoholic beverages (a

common practice in the literature) may be too large. Additionally, in Supplement K, I

present a second merger analysis using the constructed cereal data from Nevo (2000a),

showing substantial bias reduction from the proposed correction. Both applications
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include specifications that incorporate market fixed effects, further demonstrating

that demand parameter estimates remain sensitive to market size assumptions even

with these controls.

In the Monte Carlo simulations (Supplement H), I examine what parameters are

most sensitive to errors in market size measurements. Furthermore, I find that adding

random coefficients on an intercept or prices does not fix the bias with mismeasured

market size. I also show that my proposed approach performs well, particularly when

the true share of the outside option is not extremely large, and so my method will

generally be useful in applications.

The proposed method in this paper is transparent and simple to implement. It

requires estimating only a few extra nonlinear parameters in a Generalized Method of

Moments (GMM) context, along with the standard BLP estimation. Researchers may

have tried to estimate market size, but the lack of identification theorem and the un-

satisfactory empirical performance with the estimator have hindered the widespread

adoption of market size estimation in applied work. This paper provides conditions

under which the market size is identified, explores the data variation that achieves

identification, discusses under what market structures identification may be poor, and

proposes tests to assess the relevance of these instruments.

We hope that researchers who find their outcomes sensitive to market size assump-

tions can flexibly incorporate our model as an extra specification in their analysis.

Moreover, whenever the market size itself is important to practitioners or regulators,

this method can serve as a means to infer the size of the market. Note, that although

the solution is simple, it goes beyond merely adding a regressor or market fixed effects.

1.1 Why Market Size Matters

One argument for not correcting the market size issue is the belief that random

coefficients or a nesting parameter can partially account for the bias. Indeed, calcu-

lations such as own-price elasticities, may exhibit less sensitivity when the model in-

cludes random coefficients, as seen in Rysman (2004), Iizuka (2007), and Duch-Brown

et al. (2017). However, my simulations and empirical study reveal that random co-

efficients do not fully eliminate biases. Biases are particularly pronounced in certain

calculations, such as outside good elasticities, outside good diversion ratios, choice

probabilities, and aggregate price elasticities, even with a random coefficient on price

or the intercept. Conlon and Mortimer (2021) (Table 4) also find that outside di-

version ratios and aggregate elasticities are sensitive to market size in both the BLP
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automobile application and Nevo’s cereal application.

Moreover, as market shares and their derivatives enter the supply-side pricing first

order condition, researchers aiming to recover marginal costs and markups from the

pricing condition may end up with biased estimates. This bias can propagate through

the structural model and substantially affect results for empirical questions, partic-

ularly those related to the outside option share, such as the willingness-to-pay for a

new good (see discussion in Conlon and Mortimer 2021), tax or subsidy policies (de-

pendent on aggregate elasticities), and merger analysis. Table 2 summarizes a list of

merger studies using different logit-based demand models with various specifications,

with and without market fixed effects, highlighting calculations and counterfactual

estimates that are sensitive to market size assumptions. See Supplement B for addi-

tional examples and discussion in other empirical settings.

Table 2: Sensitivity Analysis to Market Size Assumptions in Horizontal Merger Studies

Article Demand
Model

Market
FE

Sensitivity Analysis
Market size affects:

Ivaldi and Verboven
(2005)

Nested Logit Yes Aggregate price elasticities

Weinberg and Hosken
(2013)

Plain Logit No Simulated merger price changes

Bokhari and Mariuzzo
(2018)

BLP Yes Cross-price elasticities and simu-
lated price changes

Wollmann (2018) BLP No Total output changes and compen-
sating variation

Furthermore, in the Department of Justice (DOJ) documents, the word “market

size” appears at a high frequency, implying that the size of a market by itself is

a piece of critical and useful information for firms and regulators.4 This suggests

that obtaining a consistent estimate of the true market size is important in itself, in

addition to its use in removing model estimate biases.

The next section is a literature review. In section 3, I start with a multinomial logit

demand model to provide simple identification results. In section 4, I show general

identification for the random coefficients logit model. Section 5 provides extensions.

4At the DOJ/FTC merger workshop, Newmark (2004) emphasizes the significance of market
size/population in price-concentration studies for merger cases. Additionally, firms predict product
quantities on the basis of potential market size. The Comments of DOJ on Joint Application Of
American Airlines Et Al. state that “To model the benefits of an alliance . . . Given a fixed market
size, passengers are assigned based on relative attractiveness of different airline offerings.”
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Section 6 presents an empirical application. Section 7 summarizes additional results

provided in the Online Supplemental Appendix, and section 8 concludes. Proofs of

main theorems are in the Appendix.

2 Literature Review

Some researchers realize the issue and explicitly incorporate market size estimation

into demand models. Bresnahan and Reiss (1987) and Greenstein (1996) both specify

market size as a linear function of market characteristics, though theirs is a vertical

model rather than BLP. Berry, Carnall, and Spiller (2006) estimate a scaling factor

similar to this paper, however, they do not discuss identification as I do, and they do

not allow for market size being a more general function of multiple measures. Chu,

Leslie, and Sorensen (2011) and Byrne et al. (2022) utilize observed cost data and

the supply side first order condition to obtain identification of market size. Sweeting,

Roberts, and Gedge (2020) and Li et al. (2022) estimate a generalized gravity equation

and define market size as proportional to the expected total passengers predicted

from the gravity equation but leave the choice of the proportionality factor to the

researcher. Hortaçsu, Oery, and Williams (2022) estimate a Poisson arrival process

and use the arrival rate as a proxy measure of market size. Their method applies

to settings with individual choice data, whereas I focus on aggregate data. Huang

and Rojas (2013) consider a plain logit model, where they use market fixed effects

to eliminate bias in the first stage and recover market size by a minimum distance

estimator in the second stage.

The closest study to ours is Huang and Rojas (2014), which provides theoretically-

founded methods to deal with the market size problem in a random coefficients logit

setting, by approximating the unobserved market size as a linear function of market

characteristics (Chamberlain’s device). They employ the control function method to

handle price endogeneity as in Petrin and Train (2010). By doing so, the unobserved

market size becomes an additive term outside of the nonlinear part of the demand

function. In contrast, ours is built on the standard BLP framework, where market

size enters the moment restrictions in a nonlinear manner. Huang and Rojas (2014)’s

method largely relies on the linear additivity and thus can not extend directly to the

BLP framework.5 Their primary focus is on removing bias, while this paper also aims

5Petrin and Train (2010)’s control function approach is an alternative to the BLP approach in
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to identify and estimate the market size.

Two other papers have looked at issues arising in constructing market shares.

Gandhi, Lu, and Shi (2023) handle the problem of zeros in market share data. Berry,

Linton, and Pakes (2004) take into account sampling errors in estimating shares from

a sample of consumers. While both papers deal with errors in aggregate market

shares, the present paper tackles a different problem, inherent to the model itself

rather than features of the data sample. The goal of this paper is to address the

more fundamental problem of the unobserved share of the outside option and that all

shares will be inconsistent in the limit. Unlike sampling errors that diminish as the

sample size increases, the errors I address persist and do not vanish.

More recently, theoretical literature on the identification and estimation of ran-

dom coefficients aggregate demand model has been growing. Berry and Haile (2014)

and Gandhi and Houde (2019) emphasize that identification of BLP demand mod-

els requires instruments for not only endogenous prices but also endogenous market

shares. Other studies that discuss the role of instruments in BLP models include

Reynaert and Verboven (2014), and Conlon and Gortmaker (2020). I contribute to

this literature by providing low-level conditions on instruments for identification of

random coefficients in the standard BLP model, both with and without identifying

market size.

Recent work generalizes the parametric demand models to more flexible nonpara-

metric, nonseparable demand systems. Nonparametric identification of aggregate

demand models is studied by Berry and Haile (2014), Gandhi and Houde (2019),

Lu, Shi, and Tao (2021), and Dunker, Hoderlein, and Kaido (2022), among others.

This paper also provides conditions for identification of market size in nonparametric

specified demand models.

3 Simple Identification in Multinomial Logit De-

mand Model

I begin with a simple special case of our general results, by showing identification of

market size in plain logit and nested logit demand models without random coefficients.

Throughout this section, I assume exogenous prices to simplify the exposition. The

dealing with the price endogeneity; which method to use will be application-specific. This discussion
is outside the scope of the present paper.
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results in this section are not as general as the main identification theorem, but they

provide demonstration of how market size is identified from aggregate data and can

be applied in empirical contexts with substitution patterns that can reasonably be

characterized by a parsimonious demand model.

3.1 Demand Model

Suppose that we observe T independent markets. A market can refer to a single region

in a single time period. Let Jt = (1, · · · , Jt) be the set of differentiated products in

market t, referred to as inside goods. Let j = 0 denote the outside option. As in

Berry (1994), I assume the indirect utility of consumer i for product j in market t is

characterized by a linear index structure

Uijt = X ′jtβ + ξjt + εijt,

which depends on a vector of observed product characteristics Xjt ∈ RL, unobserved

characteristics ξjt, and idiosyncratic tastes of consumers εijt. Consumer tastes are

assumed to be independently and identically distributed across consumers and prod-

ucts, with extreme value type I distribution. Let the average utility index of product

j at market t be denoted as δjt = X ′jtβ + ξjt, with the mean utility for the outside

option being normalized as δ0t = 0.

Let πjt denote the true conditional probability of choosing product j in market

t. Each consumer chooses the product that gives rise to the highest utility. The

probability of choosing good j is obtained by integrating out over the distribution

of consumer tastes εijt. Given the functional form and parametric assumptions, the

true choice probability takes an analytic form:

πjt =
exp(δjt)

1 +
∑Jt

k=1 exp(δkt)
∀j ∈ Jt, and π0t =

1

1 +
∑Jt

k=1 exp(δkt)
.

In a plain logit context, the nonlinear demand system can be inverted to solve for δjt

as a function of choice probabilities, yielding

ln(πjt/π0t) = X ′jtβ + ξjt ∀j ∈ Jt. (1)

If the value of πjt and π0t were observed, parameters β can be consistently estimated
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by regressing ln(πjt/π0t) on Xjt. GMM estimators can be constructed based on mean

independence conditions E(ξjt | Xjt) = 0. In the case with endogenous product

characteristics, one can use excluded instruments along with exogenous characteristics

to address endogeneity. The conditions imposed so far are standard assumptions

from Berry (1994) and the empirical IO literature, which are sufficient to identify the

demand parameters β when the market size is correctly measured and therefore πjt

and π0t are observed without errors.

In Supplement C, I formally derive the bias in the estimated value of β when esti-

mating equation (1) with a mismeasured market size. For instance, when the market

size used in estimation is larger than the true size, the estimated price coefficient

will be biased downward (in absolute value), resulting in an underestimation of price

sensitivity.

3.2 Market Size Model

In this subsection I provide modeling assumptions for unobserved πjt and π0t. These

assumptions allow us to characterize the connection between unobserved probabilities

and measures of market size. I then combine these assumptions with the demand

system to obtain a new model which I will later prove identification.

Define r∗jt by

r∗jt =
πjt∑Jt
k=1 πkt

∀j ∈ Jt, (2)

which is the true conditional choice probability of choosing product j, conditional on

purchasing any inside goods. Using equations (1) and (2), we have

ln
(
r∗jt
)

= ln

(
π0t

1− π0t

)
+X ′jtβ + ξjt ∀j ∈ Jt. (3)

Let Njt be the observed sales of good j in market t, and let N total
t =

∑Jt
j=1Njt

denote the total observed sales of all goods. We observe rjt,
6 where rjt = Njt/N

total
t

represents the fraction of total purchases spent on good j in market t, and therefore

does not depend on the outside option or the size of the total market. I call these rjt

6In most empirical contexts, we might directly observe Njt. For example, the number of pas-
sengers on flights by airline j in city pair t, or servings of cereals of brand j sold in city t. From
these observed Njt we can calculate rjt and N total

t . In other applications, rjt and N total
t might come

from separate sources. For instance, rjt could be the fraction of a set of sampled consumers who
buy product j in time period t, and N total

t could be separate estimates of total sales in time t.
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relative shares, and assume rjt = r∗jt. In Supplement D, I relax this assumption and

allow the true r∗jt to be unobservable, introducing sampling errors or measurement

errors in rjt.

The issue with not observing market size is not observing π0t in equation (3). If

the total market size were directly observed, π0t can be calculated from the observed

N total
t and the market size. However, observing only the relative shares rjt for all Jt

goods does not provide sufficient information to determine π0t. Therefore, we need

to specify a model for the unobserved outside share. Compared to equation (1),

the model of equation (3) offers the advantage that only the first term on the right

side depends on the outside share, and thus it is easier and more natural to impose

assumptions on this additively separable term.

Let Mt be some observed population or quantity measure of market t that we

believe is related to the true market size.7 Assume that 1 − π0t = N total
t /γMt. Let

Wt = Mt/N
total
t denote observed market to sales. Given the assumption on π0t, we

have

ln

(
π0t

1− π0t

)
= ln (γWt − 1) (4)

for some unknown constant γ. In Supplement D, I relax equation (4) by introducing

a random error term vt, so that this relationship is approximate rather than exact. In

section 4, I further generalize the model by allowing π0t to depend on multiple γ’s.8

Putting the above equations and assumptions together we get the estimating equa-

tion

ln (rjt) = ln (γWt − 1) +X ′jtβ + ξjt ∀j ∈ Jt. (5)

Unknown parameters in model (5) include the market size parameter γ and de-

mand coefficients β. Note, that β can be identified from a market fixed effects regres-

sion without identifying γ. In Supplement E, I present the formal identification of

a model with market fixed effects κt. While the market fixed effects approach iden-

tifies demand parameters, there are three major disadvantages. First, market size

remains unidentified if γ is the object of interest. Second, counterfactual exercises,

7For instance, if a market is defined to be a city, Mt could be the population size (e.g. Nevo 2001;
Berto Villas-Boas 2007; Rysman 2004; Ho, Ho, and Mortimer 2012; and Ghose, Ipeirotis, and Li
2012). Alternatively, Mt could be a prediction of total product sales or the number of passengers on
a flight (e.g. Sweeting, Roberts, and Gedge 2020; Li et al. 2022; and Backus, Conlon, and Sinkinson
2021).

8An alternative approach to relaxing this modeling assumption is to consider γ as a function of
observed market-level covariates that affect preferences. I leave this possibility for future research.
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such as mergers and product entry or exit, require not only removing bias in β but

also consistently estimating κt, which requires the number of products to approach

infinity. A downside of taking asymptotics in this dimension is that, as shown in

Armstrong (2016), standard BLP instruments (product characteristics instruments)

become invalid as price instruments in the limit. Third, and most importantly, I show

in section 4.4 that market fixed effects remove bias only in the simple logit or nested

logit models, not in the more general random coefficients logit model, and the latter

is the main focus of this paper.

3.3 Identification

Assumption 1. E (ξjt | Qt, X1t, . . . , XJtt) = 0, where Qt represents instruments for

Wt. Wt is continuously distributed. The number of markets T →∞.

Assumption 1 assumes that the additive error ξjt is mean independent of product

characteristics and some instrument Qt, and that the regressor have a continuous

distribution. Note that the nonlinear variableWt in equation (5) is endogenous since it

is a function of quantities. The instrument Qt can take the form of a vector or a scalar.

For the sake of convenience, Theorem 1 employs a scalar Qt. The large T assumption

is necessary as the theorem is based on a conditional expectation conditioning on

Qt, and the derivatives of the conditional expectation. These derivatives would be

estimated using nonparametric regression techniques such as kernel regression or local

polynomials (Li and Racine 2007).

Theorem 1. Given Assumption 1 and equation (5), let Γ be the set of all possible

values of γ, if

1. function f(c, q, x) is twice differentiable in (c, q) for every x ∈ supp(Xjt), where

f(c, q, x) = E (ln (rjt)− ln (cWt − 1) | Qt = q,Xjt = x) ,

2. and ∂E
(
− Wt

cWt−1
| Qt = q,Xjt = x

)
/∂q > 0 or < 0 for all c ∈ Γ,9

then γ and β are identified.

9For a binary instrument Q, we can replace the derivative ∂E
(

Wt

cWt−1 | Qt = q,Xjt = x
)
/∂q

with E
(

Wt

cWt−1 | Qt = 1
)
− E

(
Wt

cWt−1 | Qt = 0
)

.
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The proof of Theorem 1, provided in the Appendix, works by showing that there

exists q and x such that g(c, q, x) = 0 has a unique solution c, where g(c, q, x) =

∂f(c, q, x)/∂q. Generally, the second condition in Theorem 1 is a nonlinear analog of

the traditional relevance restriction required in the classical linear IV model, requiring

Wt to vary with Qt in a certain way. Estimation of the model of equation (5) based

on Theorem 1 is straightforward. It could be done by a standard GMM estimation

or nonlinear two-stage least squares estimation using Qt as instruments.

3.3.1 Visual Intuition

Figure 1 offers intuition for the identification result. In a simplified model where

δjt = −pjt + ξjt, with two goods (j = 1 Coke and j = 2 Pepsi), the space of εij is

partitioned into three regions, each corresponding to the choice of j = 0, 1, 2 (Berry

and Haile 2014 and Thompson 1989). The measure of consumers in each region, i.e.

integral of ε over the region, reflects choice probabilities. For example, Pr(j = 1 |
p, ξ) = Pr(εi1 > p1 − ξ1; εi1 > εi2 + (p1 − ξ1)− (p2 − ξ2)).

Panels (a) and (b) of Figure 1 depict a dgp where the true π0t is small. Panels

(c) and (d) show similar graphs but with large true π0t. When the price of good

2 increases, the changes in choice probabilities π0t and π1t are captured by shaded

boundaries S0 and S1. In panel (b), the price increase prompts more consumers to

switch to good 1, while in panel (d), the same price change leads to more consumers

switching to the outside option. The relative diversion to the outside option com-

pared to good 1, which is known, relies on the original sizes of each region, which is

unknown, and this relationship provides identification of the underlying market size.

In summary, the level of substitution to the outside good depends on the true market

shares. Relative changes in quantities of inside versus outside goods can be exploited

to recover the true market size.
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(a) small π0t
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(b) small π0t, when p2 ↑ by ∆p
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(c) big π0t
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S0
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(d) big π0t, when p2 ↑ by ∆p

Figure 1: Intuition for Identification in Multinomial Logit Demand Model

3.4 The Nested Logit Demand Model

In Supplement F, I establish formal identification of market size in a nested logit

demand model. Here I briefly summarize the intuition. Consider the case where all

goods are divided up into two nests, one with the outside good as the only choice and

the other containing all inside goods. Using our notation, the estimating equation is

a nonlinear function of the market size parameter γ and the nesting parameter: ρ,

ln (rjt) = 1
1−ρ ln (γWt − 1) +X ′jt

β
1−ρ +

ξjt
1−ρ . The total derivative with respect to these

two parameters has independent variation. We leverage instruments that shift Wt to

separately identify γ and ρ.
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Note that a nested logit model is a special case of random coefficients logit, where

the random coefficient is on a group dummy variable and follows a particular distri-

bution. When all inside goods are in one nest, the group dummy variable is just the

intercept. Our result for the nested logit model thus implies a similar argument for a

general random coefficient on the intercept. In other words, both a random coefficient

on the intercept and market size parameters are generally identifiable.

4 General Identification in Random Coefficients

Logit Demand Model

This section generalizes previous results to the random coefficients demand model.

I start by introducing the notation and model assumptions, followed by presenting

sufficient conditions for model identification and suggesting valid instruments. A test

for instrument relevance is included in Supplement G. Next, I provide a numerical

illustration to offer intuition for separately identifying market size and random coef-

ficients. Additionally, I derive results for market fixed effects and demonstrate that

market size remains identified even after conditioning on market-level dummies.

4.1 Demand Model and Market Size

The utility of consumer i for product j in market t is now given by

Uijt = X ′jtβi + ξjt + εijt, (6)

where βi = (βi1, · · · , βiL). The individual-specific taste parameter for the l-th char-

acteristics can be decomposed into a mean level term βl and a deviation from the

mean σlνil: βil = βl + σlνil, with νi ∼ fν(ν). νil captures consumer characteristics,

which could be either observed individual characteristics or unobserved character-

istics. When estimating demand models with aggregate data, observed individual

characteristics are typically unavailable. Therefore, νil in the current analysis is as-

sumed to be unobserved characteristics with a known distribution fν . Extending

the model to include observed consumer characteristics would be straightforward if

individual-level data were available.

Let δjt denote the mean utility X ′jtβ + ξjt. Combining equations we have Uijt =
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δjt +
∑

l σlx
(2)
jtl νil + εijt, where X

(2)
jt = (x

(2)
jt1, · · · , x

(2)
jtL′) is a L′ × 1 subvector of Xjt

that has random coefficients and is the nonlinear components of the indirect utility

function. Note that we can include market-level dummies in the mean utility, and

X
(2)
jt may contain a constant term. Therefore, the results in this section do not exclude

the possibility of market fixed effects or a random coefficient on the intercept.

After integrating out over the logit error εijt, the true aggregate choice probability

is

πjt

(
δt, X

(2)
t ;σ

)
=

∫
exp(δjt +

∑
l σlx

(2)
jtl νil)

1 +
∑Jt

k=1 exp(δkt +
∑

l σlx
(2)
ktlνil)

fν(ν)dν, (7)

where the arguments in the choice probability function are mean utilities δt = (δ1t, · · · , δJtt),
nonlinear attributes X

(2)
t = (X

(2)
1t , · · · , X

(2)
Jtt

) and taste parameters σ = (σ1, · · · , σL′).

The choice probability is written as a function of δt, X
(2)
t and σ in order to highlight

its dependence on the mean utilities, nonlinear attributes, and parameters of the

model. I suppress the dependence of the choice probability function on νi for brevity.

The mean utility of outside good is normalized to δ0t = 0.

Let Mt = (M1t, · · · ,MKt) be a vector of measures of the market size, and γ =

(γ1, γ2), γ1 = (γ11, · · · , γK1) and γ2 = (γ12, · · · , γK2) are two vectors of market size

parameters. Recall that Njt is the observed sales of each good and N total
jt the total

sales of all inside goods. Assumption 2 incorporates a general model of market size

into the demand system.10

Assumption 2. Γ = {(γ1, γ2) |
∑

k γk1M
γk2
kt > N total

t for all t ∈ 1 · · ·T} is the set of

all possible values of γ. The implicit system of demand equations in a given market

t is given by
Nt∑K

k=1 γk1M
γk2
kt

= πt

(
δt, X

(2)
t ;σ

)
, (8)

where Nt = (N1t, · · · , NJtt) and πt(·) = (π1t(·), · · · , πJtt(·)) represent vectors of ob-

served quantities and choice probability functions.

The market size formula
∑
γk1M

γk2
kt has several appealing features. Taking the

airline market as an example, suppose M1t is the population of city A (a small market)

andM2t is the population of city B (a big market). The true size of a market defined by

10I do not account for an error in how the market size model (the function of Mt) matches the
actual market size. In other words, while it may be appealing to allow for random variation in the
market size, since the standard BLP model does not incorporate such random error, I leave this
extension for future work.

16



these two end-point cities could be M2
1t+3M2

2t. First, this formula allows for different

coefficients for each term. For instance, city B might have a larger coefficient due

to being a major transportation hub. Second, it accommodates nonlinearity in Mt.

In the airline example, larger metropolitan areas are more likely to have alternative

transportation options, such as high-speed rail or highways in multiple directions.

The functional form
∑
γk1M

γk2
kt can be generalized to any known function s(Mt; γ)

described by the vector γ. A necessary condition for identification is that the support

of the vector derivative ∇s(Mt; γ) does not lie in a proper linear subspace of Rdim(γ).

4.2 Identification

In a standard BLP model, the link between the choice probability πjt(δt, X
(2)
t ;σ)

predicted by the model and the observed market shares is crucial. The key to identi-

fication and estimation in a standard BLP model is to recover the mean utility δt as

a function of the observed variables and parameters, by the inversion of the demand

equation system. This paper builds on the same form of demand inversion while

replacing observed market shares with the unobserved ones.

The identification argument can be summarized into two parts: First, I show

that for any given parameters (γ, σ) and data (Nt,Mt, Xjt), the implicit system of

equations (8) has a unique solution δt for each market. Proposition 1, adapted from

Berry (1994) and Berry, Levinsohn, and Pakes (1995), establishes the existence and

uniqueness of demand inversion (see also Berry and Haile (2014) for demand inversion

in nonparametric models). Second, once we have a unique sequence of inverse demand

function δjt(Nt,Mt, X
(2)
t ; γ, σ), we can construct a corresponding sequence of residual

function ξjt(Nt,Mt, Xt; γ, σ, β), which will be defined later. Identification is then

based on conditional moment restrictions, and we will require unique solutions to the

associated unconditional moment conditions at the true parameter values.

Proposition 1. Let equations (7) and (8) hold. Define the function gt : RJt → RJt,

as gt(δt) = δt + ln(Nt) − ln(
∑K

k=1 γk1M
γk2
kt ) − ln(πt(δt, X

(2)
t ;σ)). Given any choice of

the model parameters (γ, σ) and any given (Nt,Mt, X
(2)
t ), there is a unique fixed point

δt(Nt,Mt, X
(2)
t ; γ, σ) to the function gt in RJt.

The proof of Proposition 1 closely follows the contraction mapping argument in

Berry, Levinsohn, and Pakes (1995). I show that all the conditions in the contraction

17



mapping theorem are satisfied in our setting with the extra vector of γ. Therefore,

the function g(δ) is a contraction mapping.

Proposition 1 shows that there is a unique fixed point δt to the function gt(δt). Let

θ = (γ, σ, β) ∈ Θ be the full vector of model parameters of dimension dim(θ). Given

the inverse demand function δjt(Nt,Mt, X
(2)
t ; γ, σ), I define the residual function as

ξjt (Nt,Mt, Xt; θ) = δjt

(
Nt,Mt, X

(2)
t ; γ, σ

)
−X ′jtβ. (9)

The uniqueness of δjt(Nt,Mt, X
(2)
t ; γ, σ) implies a unique sequence of ξjt(Nt,Mt, Xt; θ).

Following Berry, Levinsohn, and Pakes (1995), Berry and Haile (2014), and Gandhi

and Houde (2019), I assume that the unobserved structural error term is mean in-

dependent of a set of exogenous instruments Zt, based off which we can construct

unconditional moment conditions.

Assumption 3. Let Zt = (Z1t, · · · , ZJt). The unobserved product-specific quality is

mean independent of a vector of instruments Zt, so E (ξjt(Nt,Mt, Xt; θ0) | Zt) = 0.

Define hjt(θ) = ξjt(Nt,Mt, Xt; θ)φj(Zt), where φj(Zt) is a m×1 vector function of

the instruments with m ≥ dim(θ). Then the conditional moment restriction implies

E (hjt(θ0)) = 0.

The instrument vector Zt typically includes a subvector of Xt that contains ex-

ogenous characteristics and excluded price instruments such as cost shifters. The

assumption posits that the structural error is mean independent not only of the exoge-

nous covariates of product j but also of all other products. I will discuss instruments

in detail in the next subsection.

Definition 1. θ0 is locally identified if and only if there exists an open neighborhood

of θ0 in which the equations E (hjt(θ)) = 0 have a unique solution at θ = θ0. In other

words,

E
(
hjt(θ̃)

)
= 0 ⇐⇒ θ̃ = θ0, (10)

for θ̃ in an open neighborhood of θ0.

I formally define local identification in Definition 1. Assumption 4 in Berry and

Haile (2014) and equation (5) in Gandhi and Houde (2019) both impose a similar

high-level identification assumption to (10). Theorem 5.1.1 in Hsiao (1983) (in line

with Fisher 1966 and Rothenberg 1971) provides sufficient rank conditions for the
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identification assumption stated above to hold locally, which I summarize in Propo-

sition 2.11

Proposition 2 (Theorem 5.1.1 in Hsiao 1983). If θ0 is a regular point, a necessary

and sufficient condition that θ0 be a locally isolated solution is that the m × dim(θ)

Jacobian matrix formed by taking partial derivatives of E (hjt(θ)) with respect to θ,

∇θE (hjt(θ)) has rank dim(θ) at θ0.

Using Proposition 2, I can now establish an identification theorem for the random

coefficients demand model with an unobserved market size.12

Theorem 2. Assume that hjt(θ) is integrable for all θ ∈ Θ and is continuously

differentiable, and ∇θhjt(θ) is dominated by some Lebesgue integrable function for all

θ. Under Assumptions 2 and 3, if the rank of

E

[
φj(Zt)

∂δjt(Nt,Mt, X
(2)
t ; γ, σ)

∂γ′
φj(Zt)

∂δjt(Nt,Mt, X
(2)
t ; γ, σ)

∂σ′
φj(Zt)X

′
jt

]
is dim(θ) at θ0, then θ is locally identified.

The identification proof follows directly from Proposition 2 and the rank condition

that the Jacobian matrix has rank K. Standard BLP models require a rank condition

similar to the one stated in Theorem 2, but not the same because it does not have

the extra γ rows and columns in the Jacobian matrix. These moments depend on the

inverse demand function, which lacks a closed-form expression, making it challenging

to directly verify full column rank. However, I show that the full rank condition

is generally satisfied due to the high nonlinearity of the demand system. The rank

condition is testable using the test of the null of underidentification proposed by

Wright (2003).

4.2.1 Sufficient Conditions for Identification

I replace the high-level rank condition with some low-level conditions on instruments.

The identification theorem imposes an assumption regarding the rank of the Jacobian

11Because of the nonlinear GMM setting of BLP, the identification results hold only locally. The
global identification criteria discussed in Rothenberg 1971 are generally not satisfied.

12The application of full rank conditions for achieving local identification is seen in various studies,
including McConnell and Phipps (1987), Iskrev (2010), Qu and Tkachenko (2012), Milunovich and
Yang (2013), and Gospodinov and Ng (2015).
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matrix. To verify the rank of the Jacobian matrix, I calculate the derivatives of hjt(θ).

The Jacobian matrix encompasses four sets of derivatives: derivatives with respect to

γ1, γ2, σ and β, respectively. By utilizing the implicit function theorem for a system

of equations (Sydsæter et al. 2008) and applying the Cramer’s rule, the first two sets

of derivatives can be explicitly computed as

J1 =
∂hjt(θ)

∂γk1

=

∣∣∣∣∣∣∣∣∣∣

∂π1t

∂δ1t

. . .
∂π1t

∂δJt
...

. . .
...

∂πJt
∂δ1t

. . .
∂πJt
∂δJt

∣∣∣∣∣∣∣∣∣∣

−1 ∣∣∣∣∣∣∣∣∣∣

∂π1t

∂δ1t

. . . −π1t . . .
∂π1t

∂δJt
...

. . .
...

. . .
...

∂πJt
∂δ1t

. . . −πJt . . .
∂πJt
∂δJt

∣∣∣∣∣∣∣∣∣∣︸ ︷︷ ︸
(π1t, · · · , πJt)′ is in the j-th column

Mγk2
kt∑

k γk1M
γk2
kt

φj(Zt),

= Ψjt

(
δt, X

(2)
t ;σ

) Mγk2
kt∑

k γk1M
γk2
kt

φj(Zt), (11)

and

J2 =
∂hjt(θ)

∂γk2

= Ψjt

(
δt, X

(2)
t ;σ

) γk1 ln(Mkt)M
γk2
kt∑

k γk1M
γk2
kt

φj(Zt) (12)

where J1 and J2 are m × 1 vectors, and Ψjt(δt, X
(2)
t ;σ) denotes the product of the

first two matrix determinants in equation (11). I emphasize its dependence on δt and

X
(2)
t because the partial derivatives of πjt with respect to δjt and δkt are functions of

mean utilities and characteristics of all products. I provide the calculation of these

partial derivatives in Supplement L. The Jacobian determinant of (π1t, · · · , πJt)′ with

respect to (δ1t, · · · , δJt) is different from zero, so the condition of implicit function

theorem is satisfied.13

Remark 1. The Jacobian matrices show that cases in which identification fails are,

when γk1 = 0 for some k (so that the corresponding γk2 is not identified), or if Mt were

independent of φj(Zt) and all other components in the demand model. In the latter

case, E(∂hjt/∂γk1) = cE(∂hjt/∂γk2), for some non-zero constant c. This makes it

impossible to separately identify γk1 and γk2, neither could we distinguish γk1 and γj1

for j 6= k. To disentangle the γ vector, we require at least some instruments φj(Zt)

be correlated with Mt. This could be Mt itself serving as its own instrument, given

13When market size takes a general form s(Mt; γ), the column of Jacobian matrix corresponding

to the first element of γ is J1 = Ψjt

(
δt, X

(2)
t ;σ

)
∂s(Mt;γ)
∂γ1

1
s(Mt;γ)

φj(Zt).
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that it is independent of the demand shock, or any outside variables that change Mt

exogenously.

The third group of derivatives is

J3 =
∂hjt(θ)

∂σl
=

∣∣∣∣∣∣∣∣∣∣

∂π1t

∂δ1t

. . .
∂π1t

∂δJt
...

. . .
...

∂πJt
∂δ1t

. . .
∂πJt
∂δJt

∣∣∣∣∣∣∣∣∣∣

−1 ∣∣∣∣∣∣∣∣∣∣

∂π1t

∂δ1t

. . . −∂π1t

∂σl
. . .

∂π1t

∂δJt
...

. . .
...

. . .
...

∂πJt
∂δ1t

. . . −∂πJt
∂σl

. . .
∂πJt
∂δJt

∣∣∣∣∣∣∣∣∣∣︸ ︷︷ ︸
(−∂π1t/∂σl, · · · ,−∂πJt/∂σl)′ is in the j-th column

φj(Zt)

= Φjt(δt, X
(2)
t ;σ)φj(Zt),

where I let the product of the two determinants of J3 be denoted as Φjt(δt, X
(2)
t ;σ).

Comparing J3 with J1 (or J2), the first determinant term of Φjt(δt, X
(2)
t ;σ) and

Ψjt(δt, X
(2)
t ;σ) are identical. The difference lies in the j-th column of the second de-

terminant term, which is (−∂π1t/∂σl, · · · ,−∂πJt/∂σl)′ for J3, and (−π1t, · · · ,−πJt)′

for J1 and J2. Observe that the derivative ∂πjt(δt, X
(2)
t ;σ)/∂σl and πjt(δt, X

(2)
t ;σ)

are not perfectly collinear in general,14 implying that Ψjt(δt, X
(2)
t ;σ) is not perfect

multicollinear with Φjt(δt, X
(2)
t ;σ). The column vectors of the Jacobian matrix are

therefore linearly independent as long as we have a sufficient number of instruments

that are correlated with Ψjt(δt, X
(2)
t ;σ) and Φjt(δt, X

(2)
t ;σ), respectively. Lemma 1

formalizes this sufficient condition.

Lemma 1. Suppose γ2 = 0 and γ1 is a scalar. Let φ
(1)
j (Zt) , φ

(2)
j (Zt) and φ

(3)
j (Zt)

be subvectors of φj(Zt). The rank condition for identification given in Theorem 2

is satisfied if E(φ
(1)
j (Zt)X

′
t) is non-singular, the support of φj(Zt) does not lie in

a proper linear subspace of Rdim(θ), the joint support of ∂πjt(δt, X
(2)
t ;σ0)/∂σl and

πjt(δt, X
(2)
t ;σ0) does not lie in a proper linear subspace of R2 for all l, and there are

14Specifically, for the j-th column of the above matrices, we have

πjt

(
δt, X

(2)
t ;σ

)
=

∫
πjti

(
δt, X

(2)
t ;σ

)
fν(ν)dν for J1 (or J2), and

∂πjt

(
δt, X

(2)
t ;σ

)
∂σl

=

∫
πjti

(
δt, X

(2)
t ;σ

)(
x
(2)
jtl −

J∑
k=1

x
(2)
ktlπkti

(
δt, X

(2)
t ;σ

))
νilfν(ν)dν for J3.

21



instruments that satisfy

Cov
(

Ψjt

(
δt, X

(2)
t ;σ0

)
, φ

(2)
j (Zt)

)
6= 0, (13)

and

Cov
(

Φjt

(
δt, X

(2)
t ;σ0

)
, φ

(3)
j (Zt)

)
6= 0, (14)

where φ
(2)
j (Zt) is of dimension one, and φ

(3)
j (Zt) has the same dimension as σ.

Remark 2. As implied by the Jacobian matrix, there are two cases where identifica-

tion becomes poor. The first occurs when the number of products J in a market tends

to infinity. In this case, Ψjt and Φjt are close to identical relative to data variability.

The second case arises when the choice probabilities for all inside goods approach zero

– that is, when the choice probability of the outside option approaches one – causing

the Jacobian column corresponding to γ to be close to zero.

Valid potential instruments that satisfy (13) and (14) are functions of exogenous

product attributes that vary by markets and products. Examples of commonly used

instruments of this type include: (i) BLP instruments, which are sums of product

attributes of other products produced by the same firm, and the sums of product at-

tributes offered by rival firms, and (ii) differentiation instruments, which are sums of

differences of products in characteristics space (Gandhi and Houde 2019).15 Another

set of valid instruments is Chamberlain’s (1987) optimal instrument, as implemented

in BLP by Reynaert and Verboven (2014). The optimal instrument is the expected

value of the Jacobian of inverse demand function, which, in the context of this paper,

is equivalent to using E(Ψjt(δt, X
(2)
t ;σ) | Zt) and E(Φjt(δt, X

(2)
t ;σ) | Zt) as instru-

ments.16 In Supplement G, I adapt an approach from Gandhi and Houde (2019) to

test the relevance of instruments for identifying the nonlinear parameters.

15The validity of differentiation instruments depends on the symmetry property of the demand
function, which has not been shown in my model. Since the introduction of γ breaks the symmetry
property that was used to derive these instruments, one can no longer treat the outside option the
same as inside goods.

16The joint identification of extra nonlinear parameters can be poor when weak IV issues are
present (as noted in Armstrong 2016 and Gandhi and Houde 2019). We leave research on this topic
for future work.
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4.3 A Numerical Illustration

In this section, I provide a brief numerical example to visually illustrate the intuition

for separately identifying market size and random coefficients.

Consider a model that has one random coefficient σ. The utility to consumer i for

product j in market t is Uijt = σνiXjt+ξjt+εijt, and the market size is parameterized

by a single scalar γ. Equation (8) can be written as
Njt
γMt

=
∫ exp(ξjt+σνiXjt)

1+
∑J
k=1(ξkt+σνiXkt)

fν(ν)dν.

If we do not impose the conditional moment restrictions as in Assumption 3, γ is

not point identified. To see this, recognize that for a given wrong value γ̃, one can

construct a corresponding wrong ξ̃jt that fits the observed data equally well by letting

ξ̃jt be given by
Njt
γ̃Mt

=
∫ exp(ξ̃jt+σνiXjt)

1+
∑J
k=1(ξ̃kt+σνiXkt)

fν(ν)dν. Put differently, for any value of

γ̃, the implied ξ̃jt will adjust to set the predicted choice probabilities equal to the

observed shares Njt/γ̃Mt.

Following a similar idea in Gandhi and Nevo (2021), in Figure 2, I visually illus-

trate the variation that distinguishes γ and σ.

Figure 2 plots Xjt against the implied residual function ξjt(σ, γ) for different values

of (σ, γ). As depicted in Figure 2(a), there is no correlation between ξ and the X

at the true parameter values. Figure 2(b) shows that when σ is different from the

truth, it exhibits a hump-shaped correlation and Figure 2(c) shows that when γ is

different from the truth, there is a linear correlation. For the wrong σ or γ to fit

the data, ξ would have to be correlated with the instruments. Therefore once we

assume that ξ is mean independent of X, we are shutting down this channel (as in

Gandhi and Nevo 2021). Only at the true parameter values can we match the market

shares. Furthermore, the graphs with wrong σ or wrong γ have different shapes,

which provide information to distinguish these two parameters.

I conducted a second exercise by adding a random coefficient on the intercept:

Uijt = σ0ν0i + σ1ν1iXjt + ξjt + εijt. For brevity, I omit the plot and summarize the

patterns here: When σ0 differs from the truth, there is no correlation between ξjt

and Xjt, but there is correlation between ξjt and
∑

k 6=j Xkt, which distinguishes itself

from σ1 and γ.
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(a) σ = σ0, γ = γ0 (b) σ > σ0, γ = γ0 (c) σ = σ0, γ > γ0

Figure 2: Intuition for Identification in Random Coefficients Logit

Notes: The figure shows a scatter plot of ξjt and the characteristics Xjt under three
scenarios. (a) σ = σ0 = 5, γ = γ0 = 1, (b) σ = 15, γ = γ0 = 1, and (c) σ = σ0 = 5, γ = 4.

4.4 Market Fixed Effects

The conditions provided in previous section do not preclude Xjt from containing

market-level dummies, and thus, in principle, both market fixed effects and market

size are identified. In Supplement E I show that in a plain logit model, by includ-

ing market fixed effects in the regression, one can obtain consistent estimators of β

without observing or estimating the true market size. In this section, I show why the

same argument cannot be made in the random coefficients case.

By Assumption 3, we have E
[(
δjt(Njt,Mt, X

(2)
t ; γ0, σ0)−X ′jtβ0

)
φj(Zt)

]
= 0. We

can rewrite the moment condition as

E
[(
δjt

(
Njt,Mt, X

(2)
t ; γ̃, σ0

)
−X ′jtβ0 + δjt

(
Njt,Mt, X

(2)
t ; γ0, σ0

)
−δjt

(
Njt,Mt, X

(2)
t ; γ̃, σ0

))
φj(Zt)

]
= 0, (15)

where γ̃ ∈ Γ can be any value in the parameter space of γ. Suppose one assumes

the market size coefficient is γ̃ and estimates the model following the standard BLP

procedure, then the probability limit of the empirical moment used in estimation is

E
[(
δjt(Njt,Mt, X

(2)
t ; γ̃, σ0)−X ′jtβ0

)
φj(Zt)

]
. Now we explore the possibility of con-

sistently estimating the parameters β and σ by adding market-level fixed effects as

in the plain logit case (Supplement E). The question then arises as to whether the

term showing up in equation (15), δjt(Njt,Mt, X
(2)
t ; γ0, σ0) − δjt(Njt,Mt, X

(2)
t ; γ̃, σ0),

is invariant across products in a given market. If yes, then this gap can be captured

by a product-invariant parameter κt, and the true moment condition (15) would be
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E
[(
δjt

(
Njt,Mt, X

(2)
t ; γ̃, σ0

)
−X ′jtβ0 − κt

)
φj(Zt)

]
= 0, from which we can consis-

tently estimate σ and β by including market-level dummies, regardless of the value

of γ̃. In other words, the choice of γ̃ would be a free normalization.

I verify this by deriving the changes in δjt resulting from changes in γ. First

consider the plain logit model, where δjt has an analytic form. For a scalar γ, the

derivative of δjt with respect to γ is − 1
γ
−

∑
k(Nkt/Mt)

γ2−γ
∑
k(Nkt/Mt)

, which depends only on

t, implying that the variation in δjt as γ changes is not product specific and thus

δjt(Njt,Mt, X
(2)
t ; γ0)− δjt(Njt,Mt, X

(2)
t ; γ̃) can be captured by κt.

Now consider the random coefficients logit. Suppose J = 2, we have

∂δ1t

(
Njt,Mt, X

(2)
t ; γ, σ

)
∂γ

=

∣∣∣∣∣∣∣
∂π1t

∂δ1t

∂π1t
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∂δ2t
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−1 ∣∣∣∣∣∣∣

π1t

γ

∂π1t

∂δ2t
π2t

γ

∂π2t

∂δ2t

∣∣∣∣∣∣∣ ,

and
∂δ2t

(
Njt,Mt, X

(2)
t ; γ, σ

)
∂γ

=

∣∣∣∣∣∣∣
∂π1t

∂δ1t

∂π1t

∂δ2t
∂π2t

∂δ1t

∂π2t

∂δ2t

∣∣∣∣∣∣∣
−1 ∣∣∣∣∣∣∣

∂π1t

∂δ1t

π1t

γ
∂π2t

∂δ1t

π2t

γ

∣∣∣∣∣∣∣ ,
respectively. The denominators are identical for j = 1, 2. When j = 1, the determi-

nant in the numerator is 1
γ

(∫
π1tifν(ν)dν

) (∫
π2ti(1− π2ti)fν(ν)dν

)
+ 1
γ

(∫
π2tifν(ν)dν

)(∫
π1tiπ2tifν(ν)dν

)
. Similarly, when j = 2, the determinant in the numerator is

1
γ

(∫
π2tifν(ν)dν

) (∫
π1ti(1− π1ti)fν(ν)dν

)
+ 1
γ

(∫
π1tifν(ν)dν

) (∫
π1tiπ2tifν(ν)dν

)
. The

two are equivalent only when ν has a degenerate distribution and the individual choice

probabilities are identical. Overall, δjt(Njt,Mt, X
(2)
t ; γ0, σ0) − δjt(Njt,Mt, X

(2)
t ; γ̃, σ0)

would have a j subscript and cannot be captured market fixed effects.

In practice, in applications where the number of markets is much larger than the

number of products, including a full set of market fixed effects sometimes results in

noisier estimates of random coefficients (see Supplement K for illustrations). Due to

loss of power and numerical instability, as shown in Table K.1, the inclusion of market

fixed effects might even make estimates more sensitive to market size assumptions.
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5 Extensions

5.1 Nonparametric Identification of Market Size

Under stronger conditions, the parametric model of market size considered in prior

sections can be extended to a more general specification where the true market size

is an unknown function of the vector of measures Mt ∈ RK . For the moment, I

consider the plain logit setting and replace the model of true market size with s(Mt),

where s(·) is an unknown function. Under this assumption, the estimating equation

becomes

ln (rjt) = ln

(
s(Mt)

N total
t

− 1

)
+X ′jtβ + ξjt,

which is a partially linear regression with an endogenous nonparametric part studied

by Ai and Chen (2003) (see also Newey and Powell 2003 and Chen and Pouzo 2009;

see Robinson 1988 for an exogenous nonparametric part). Implicitly, I allow market

size measures to be endogenous in the sense that E(Mtξjt) 6= 0. Identification of β

and s(·) can be achieved by imposing assumptions similar to those in Ai and Chen

(2003). I summarize it in the following theorem.

Theorem 3. Let Λb
c(·) = {g ∈ Λb(·) : ‖g‖Λb ≤ c < ∞} be a Hölder ball with radius

c, where ‖g‖Λb is the Hölder norm of order b. Let Yt = (N total
t ,Mt), Zjt = (Xjt, Qt),

and dim(Qt) = dim(Yt) = K + 1. Suppose the following hold: (i) E(ξjt | Zjt) = 0;

(ii) The conditional distribution of Yt given Zjt is complete; (iii) s(·) ∈ Λb
c(R

K); (iv)

E
(

ln
(
s(Mt)

Ntotal
t
− 1
)
| Zjt

)
/∈ linear span(Xjt), and E

(
XjtX

′
jt

)
is non-singular. Then

β and s(·) are identified.

The proof follows from Newey and Powell (2003) and Proposition 3.1 in Ai and

Chen (2003), relying on the completeness of the conditional distribution17. Ai and

Chen (2003) propose a sieve minimum distance estimator to estimate β and s(·). By

restricting the unknown function to a Hölder space, the function is smooth and one

can approximate it using a wide range of sieve basis.

17See Lehmann and Romano (2005) for the concept of statistical completeness. Andrews (2017)
provides examples of distributions that are complete.
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5.2 Identification With a Nonparametric Demand Model

The identification and estimation in sections 3 and 4 are based on parametric demand

models with logit error terms and a known distribution of the random variable ν.

However, in some applications, these distribution assumptions on individual tastes

may appear to be arbitrary and relatively strong. Thus, I generalize the results

to a fully nonparametric model of BLP in the spirit of Berry and Haile (2014) to

accommodate less restrictive consumer preferences. The demand system is as equation

(8), but with an unknown function πt(·) replacing the regular logit formula and an

unknown function s(·) being the true market size, yielding

Njt

s(Mt)
= πj

(
δt, X

(2)
t

)
, j = 1, · · · , J. (16)

The following results show that under a stronger exogeneity condition, (1) the mar-

ket size function s(·) can be identified up to scale, without even knowing the whole

demand model, and (2) the rest of the demand model can be identified nonparamet-

rically.

Theorem 4. Assume that Mt is continuously distributed, and is independent of

(ξt, Xt). Assume that s(m) is differentiable in m. Then s(m) = e
∫
g(m)c̃ is iden-

tified up to a constant c̃, where g(m) = ∂E(ln(Njt) | m)/∂m.

The proof is in the Appendix. After establishing point identification of market

size, the empirical shares on the left hand side of equation (16) are identified. It would

suffice to impose assumptions made in Berry and Haile (2014) to obtain nonparametric

identification of the demand model.

5.3 A Peculiar Case of Nonparametric Random Coefficients

In this section I show that identifying and estimating market size in the form of γMt

can be equivalent to nonparametric identification and estimation of a peculiar form

of random coefficients. On one hand, this provides a structural interpretation of the

γMt specification. On the other hand, it explains why flexible random coefficients

can partly address the market size issue. More specifically, consider a model with

indirect utility given by equation (6) and βi ∼ F (β) follows an unknown distribution.

Identifying and estimating F (β) can be done nonparametrically. Following the ap-
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proach of Fox, Kim, and Yang (2016) (Example 1 in their paper), using a sieve space

approximation to the distribution of random coefficients, we can write

πjt(δjt;σ) =
R∑
r=1

σr
exp (δjt +

∑
l η

r
l xjtl)

1 +
∑Jt

k=1 exp(δkt +
∑

l η
r
l xktl)

(17)

with restrictions
R∑
r=1

σr = 1 and 0 ≤ σr ≤ 1,

where ηl = (η1
l · · · ηRl ) is a fixed grid of values chosen by researchers. Parameters to

be estimated are the weights σ = (σ1 · · ·σR).

Consider a special case where there are only two types of consumers (R = 2), and

we aim to identify the probability mass of each type of consumer. Suppose, without

loss of generality, that only the constant term has a random coefficient. Let η1 = −∞
and η2 = 0 (any values other than 0 would be absorbed into the constant term of δ).

The model reduces to πjt(δjt;σ) = σ2
exp(δjt)

1+
∑Jt
k=1 exp(δkt)

. Note that σ2 plays the same role

as the scalar γ discussed in section 3 for the simple logit model when γ < 1. This

result can be extended to R > 2. If an element of η is −∞, it implies that certain

consumers will never purchase any inside goods under any circumstances. These

consumers should not be considered potential consumers and should be excluded

from the measure of market size18. In general, the most flexible model of this kind

can be approximated by a distribution with a probability mass at negative infinity.

Nonparametric random coefficients can address the unknown market size issue

if the distribution follows the specified form. Identification of random coefficients

distribution of this particular type (one that has a probability mass point at nega-

tive infinity) would require strong assumptions. In the literature on nonparametric

identification of random coefficients for aggregate demand, Berry and Haile (2014)

and Dunker, Hoderlein, and Kaido (2022) prove identification of random coefficients

without any restriction on the distribution (i.e., allow for infinite absolute moments).

However, both require full/large support of product characteristics or prices (e.g.,

Assumption 3.3(i) in Dunker, Hoderlein, and Kaido 2022).

18A limitation of our market size model is that, for example, when γ = 0.5 (or equivalently,
σ2 = 0.5), we cannot differentiate between half of the population never buying any inside goods and
the rest buying one unit per person on average, versus the entire population buying half a unit per
person on average.
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6 Empirical Application: A Merger Analysis

Market size plays a crucial role in merger analysis. The analysis of unilateral effects

hinges on whether an increase in the price of one product will lead consumers to

choose an alternative in the market; also important is whether the consumer will

divert to an outside option. Throughout this section, I assume that firms are under

a static Nash-Bertrand pricing game. The empirical specification of the supply side

follows Nevo (2000b) and Weinberg and Hosken (2013). Market shares (or market

sizes) used in estimation not only affect estimates of marginal effects (β′s) but also

enter firms’ first-order conditions for pricing. Thus, assumptions about market size

can influence estimates of firms’ markup and consumer surplus.

Suppose there are two firms each producing a single product. According to Pakes

(2017), the upward pricing pressure (UPP) of good 1 depends on the substitution

between good 1 and good 2, as well as the markup of good 2. The size of the outside

market matters for a firm’s optimization problem and, therefore, has a substantial

effect on the estimated markup. More generally, in mergers involving multiple firms

and products, the strategic complements result in all market participants increasing

their prices, which in turn generates substitution to the outside option.

In this section, I apply the proposed method to analyze the price effects of a

hypothetical merger in the Carbonated Soft Drink (CSD) market. In Supplement K,

I have a second merger analysis in the Ready-to-Eat Cereal market showing that our

method works in different empirical contexts.

6.1 Carbonated Soft Drink (CSD) Market

The soft drink market has received significant attention in the literature, primarily

driven by health and regulatory concerns. The conventional discrete choice model

remains a widely used approach in modeling consumer purchasing behavior in this

field of research.

The soft drink market is suitable for this study due to three key factors. First,

the existing literature lacks a consensus on how to define market size. Second, this

industry is one where we generally believe the outside option is not too large. Our

simulation findings suggest that the proposed method achieves stronger identification

in cases where the true choice probability of the outside option is not excessively
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large.19 Third, the occurrence of several horizontal mergers in the soft drink industry

in recent years. For example, in 2018, the Coca-Cola Company acquired Costa Coffee

and PepsiCo acquired SodaStream.

6.2 Data

I use a panel of weekly scanner data from NielsenIQ for our analysis. The NielsenIQ

scanner data provides comprehensive information on prices, sales, and product at-

tributes, including package size, flavor, and nutritional contents. The dataset covers

202 designated market areas (DMAs) in the US and spans 52 weeks, encompassing

the period from January 2019 to December 2019. I aggregate the dataset from the

retailer level to the market level. Consistent with the literature, I define a market as

a combination of a specific DMA and week, resulting in a total of 10504 DMA-week

markets20.

In addition to the NielsenIQ data, I augment the dataset with input price infor-

mation, which serves as excluded price instruments. This includes raw sugar prices

from the US Department of Agriculture, Economic Research Service; local wage from

the U.S. Bureau of Labor Statistics; as well as electricity and fuel prices from the

US Department of Energy, Energy Information Administration. More details of data

construction are in Supplement I.

6.3 Demand Model

As in section 4, the indirect utility of consumer i in market t from consuming brand j

is given by Uijt = δjt+σνiPjt+εijt. δjt denotes a market-specific, individual-invariant

mean utility from brand j: δjt = X ′jtβ + αPjt + ξjt. Xjt includes in-store presence,

brand fixed effects, seasonal effects and region fixed effects. In-store presence is

measured by the proportion of stores within a market that carry a particular brand.

19While one do not observe the true outside share ex-ante, goods with frequent purchases tend to
have a relatively small outside market. To see why, consider an extreme scenario where the prices
of all soft drink products drop to zero. Consumers who never consume soda will not suddenly enter
the market, even if the products are free, whereas soda drinkers are already regular purchasers.
Therefore, we would not anticipate a significant increase in total sales, indicating that the potential
consumption in the market is not exceptionally large. In contrast, the airline market is an example
where the outside market can be substantial, reaching as high as 99%. For instance, if all airline
tickets become free, there would likely be a surge in demand for airline flights.

20I drop markets with extremely large or small sales relative to their respective populations,
leaving us with 9, 658 markets.
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Brand fixed effects capture the time invariant unobserved product characteristics,

while seasonal effects capture temporal demand fluctuations. Pjt represents the price

of brand j, and ξjt denotes demand shocks specific to a brand-market combination,

observable to consumers but unobservable to the econometrician. The second term

σνiPjt introduces consumer heterogeneity. νi follows a standard normal distribution.

εijt follow the Extreme Value Type I distribution and are iid across consumers, brands,

and markets.

One issue is the potential endogeneity of in-store presence due to correlation with

unobservables ξjt, if local assortments cater to local demand (Quan and Williams

(2018)). I address this potential endogeneity concern by flexibly controlling for brand-

, quarter- and region-specific fixed effects. With a rich set of fixed effects included,

the unobservables that remain are brand-region specific demand shocks that vary by

time. I assume retailers or firms lack full information on consumer preferences in the

sense that they do not observe these demand shocks when making product assortment

decisions. It is worth noting that in-store presence has been used as an exogenous

covariate in previous studies such as Eizenberg and Salvo (2015). Similarly, in the

airline industry, carrier presence is often considered as an exogenous attribute. The

economic interpretation of in-store presence in the present context aligns closely with

carrier presence in the airline market. Just as carrier presence may raise concerns of

endogeneity, it has typically been addressed through via fixed effects.2122

Table 3 presents summary statistics for prices and in-store presence in the dataset,

demonstrating their sufficient variation. Prices and in-store presence are averaged

across all UPCs within each brand, weighted by the volume sales of UPCs. The last

three columns of Table 3 show the percentage of variance explained by brand, DMA,

and month dummy variables. The results indicate that a majority of the variation

in prices and in-store presence is attributed to differences between brands. After

accounting for this brand-level variation, the remaining variation is primarily driven

21Ackerberg and Rysman (2005) deal with what they call “product crowding” effect by including
retail presence in the estimating equation, where the the number of retail stores carrying a product
is parametrically specified as a function of number of products J . We acknowledge that J may
affect the differences in the assortments or in-store presence. However, in my application, this may
be less of a concern due to minimal or no variation in J across markets but significant variation in
the in-store presence.

22If stores make assortment decisions after the realization of all demand shocks (as assumed in
Ciliberto, Murry, and Tamer 2021), fixed effects may not fully address the endogeneity of in-store
presence. As an alternative, though not explored in this paper, one can use exogenous changes in
soda taxes as instruments.
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by disparities across geographic areas.

6.4 Market Size Definition

I define one serving of soft drink as 12 ounces. In calculating the market share of

the outside good, Eizenberg and Salvo (2015) assume a potential weekly consumption

of 6 liters (approximately 17 servings) per household. Similarly, Zheng, Huang, and

Ross (2019) use as γ the documented average per capita consumption of non-alcoholic

beverages, including CSDs, water, juice, tea and sports drinks. The average consump-

tion is around 30 ounces per person per day, equivalent to 17.5 servings per week.

Other studies, such as Liu, Lopez, and Zhu (2014) and Lopez, Liu, and Zhu (2015),

also utilize per capita consumption of non-alcoholic beverages as a proxy for market

size. The specific proportional factor varies depending on the inclusion of different

beverages as outside options. For example, Liu, Lopez, and Zhu (2014) include milk

consumption, while Zheng, Huang, and Ross (2019) do not. The per capita weekly

consumption of non-alcoholic beverages in Liu, Lopez, and Zhu (2014) reaches as high

as 32 servings, nearly double the amount used in Zheng, Huang, and Ross (2019).

The market size assumptions can be expressed in our notation as γMt, where Mt

represents the total population in a DMA area. Throughout this section, all compar-

isons will be made with regard to assuming γ = 17 servings. Specifically, I estimate

γ along with other demand parameters and calculate elasticities and diversion ratios.

I then simulate the merger using two potential market sizes: one assumes a market

size of 17 servings per week, and the other assumes γ̂ servings per week.

6.5 Instruments

To address the likely correlation of the demand errors ξjt with prices, as well as

identify the random coefficients and market size parameters, I employ three sets of

instruments. The first two sets are standard excluded instruments suggested by Berry

and Haile (2014) and have been widely used in empirical studies (e.g. Eizenberg and

Salvo 2015; Petrin and Train 2010; and Nevo 2001).

The first set of price instruments belongs to the Hausman-type instrument, pro-

posed by Hausman, Leonard, and Zona (1994). Specifically, the instrument for the

price of brand j in a given DMA is the average price of this brand in other DMAs

belonging to the same Census Region. These instruments provide variation across
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brands and DMAs, and are valid due to the correlation of prices across geographic

regions through a common cost structure.23

The second class of price instruments consists of cost shifters. Specifically, I use

input prices such as electricity prices, fuel prices and local wages. These cost shifters

are excluded from the demand equation but affect prices through the supply side.

The third set of instruments serves to identify random coefficients and market

size parameters. Here I use the traditional BLP type instruments. Specifically, they

involve sums over exogenous characteristics of brands produced by the same com-

pany and sums over rival brands. I construct this class of instruments based on

in-store presence and fitted values of prices. The fitted values of prices are obtained

by regressing prices on Xjt and excluded price instrument. The projection of prices on

exogenous variables would be mean independent of the unobservables ξjt. This exoge-

nous variation in price facilitates the identification of the parameters associated with

heterogeneity in price sensitivity. As a robustness check, I also use the differentiation

instruments proposed by Gandhi and Houde (2019).

6.6 Results

Table 4 reports five sets of demand model estimates. The first two columns correspond

to plain logit and random coefficients logit models, where γ is estimated along with

other demand parameters. Columns 3 to 5 are standard BLP estimates assuming γ =

17. Column 3 replicates the specification of column 2, while column 4 introduces an

additional random coefficient on the constant term to capture unobserved preferences

for the outside option. In column 5, DMA-week specific fixed effects are included.

The strength of instruments, measured by the F-statistic of an IIA-test (as discussed

in Supplement G), is 2819 with a p-value of 0.00, rejecting the null hypothesis of weak

instruments.

The estimated values of γ are 12.478 and 11.767 for the plain logit and random

coefficients logit models, respectively24. The standard errors are relatively small, sug-

23The Hausman-type instruments could be problematic if demand unobservables are correlated
across markets (e.g., launching a national campaign). To lessen this concern, I control for DMA-
specific, brand-level in-store presence, which partially absorbs common demand shocks.

24To verify that the estimated γ achieves global minimum for the random coefficients logit model,
in Supplement J I plot the GMM objective function over a grid of values for γ. The figure suggests
that there are no multiple minima within the specified interval. However, the function is not steep
around the minimum, which could pose challenges for numerical optimization.
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gesting that empirically the instruments provide sufficient variation. These estimates

are lower than the range assumed in the literature (between 17.5 and 32), suggest-

ing that a market size defined based on per capita consumption of all non-alcoholic

beverages may be too large. It implies that not all beverage categories should be

considered as outside alternatives to soda25.

In columns 1 and 2 of Table 4, the estimated price sensitivities are −8.748 and

−9.86. The estimate of random coefficient parameter σ in column 2 is 1.952 and is

statistically significant, indicating a rejection of the plain logit model. Column 3,

assuming γ = 17, exhibits higher price sensitivity (−13.033) and a larger standard

deviation (4.395) in the preference for price. This aligns with what one would expect

when assuming a larger potential market size. Column 4, which includes a second

random coefficient on the constant term, produces estimates comparable to column 3.

The estimate of σ for the constant term is small in magnitude −0.09 and statistically

insignificant. In the last column, with market fixed effects, the estimate of price

sensitivity is much lower. Precisely estimating σ becomes challenging, with extremely

large standard errors, which is expected due to the inclusion of near 10, 000 dummy

variables in the GMM estimation. Therefore, there is limited exogenous variation

to identify the random coefficient. Note that although market fixed effects are not

included in the specification used to estimate γ (column 2) due to the large number

of markets (near 10, 000), in principle, γ is still identifiable in a specification that

includes market fixed effects.

Table 5 provides estimated own-price elasticities and outside-good diversion ratios.

Column 1 reports the elasticities based on our estimate of γ̂ = 12. The own-price

elasticities range from −3.651 to −1.887, which is consistent with previous litera-

ture26. Note that PLs have lower own-price elasticities compared to other brands.

This can be attributed to PLs being composite brands consisting of numerous niche

products. The demand for an entire category are expected be less elastic than for

each individual product. Furthermore, Steiner (2004) and Hirsch, Tiboldo, and Lopez

(2018), find that PLs face relative inelastic demand due to limited interbrand substi-

25In 2019, the soft drink consumption per person per week in the US is ap-
proximately 107 ounces, or 8.9 servings. See: https://www.ibisworld.com/us/bed/

per-capita-soft-drink-consumption/1786/. This reassures that our estimated value of potential
consumption, which amounts to 12 servings, is reasonable.

26For example, the estimated own-price elasticities in Dubé (2005) are in the range of −3 to −6.
Lopez, Liu, and Zhu (2015) report elasticities between −1 and −2. The magnitude of elasticities
varies with the aggregation level of product.
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tution within a store. The outside-good diversion ratios exceed 60% for all brands,

with PLs exhibiting the highest diversion ratio. This indicates that when faced with

a price increase, iconsumers are more likely to cease purchasing rather than switch

to branded alternatives, which is what one would expect to see if there exists a high

degree of store loyalty.

The remaining columns in Table 5 are based on estimates from columns 3 to 5

of Table 4. Assuming γ = 17 when the true value is γ = 12, the biases in own-

price elasticities are small. However, the biases in outside diversion ratios are more

substantial, with a difference of 9 percentage points for PLs and approximately 3 to 4

percentage points for other brands, indicating even less substitutions across brands.

Including a second random coefficient on the constant term yields results similar

to those in column 2. This is mainly due to the fact that the estimated σ for the

constant term is not significantly different from zero. The inclusion of market fixed

effects leads to slightly lower own-price elasticities and higher outside diversion ratios.

Although the results with market fixed effects are comparable to our estimates, the

standard error of the random coefficient estimate is so large that we can not conclude

any statistically significant results. The key takeaway from Table 5 is that none of

the commonly employed solutions produce elasticities and diversion ratios close to

those obtained using our estimated market size. Additionally, I provide estimates

of aggregate elasticities in Supplement J, which allow one to assess the impact of

hypothetical soda taxes.

Finally, I simulate a merger between the largest manufacturer and private la-

bel manufacturers.27 The merger simulation abstracts away from cost reduction, or

changes in the model of competition (e.g. coordination between other firms). Table 6

shows the percentage change in prices for the merging products. In column 1, the es-

timates (approximately 2.22% to 8.41% price increases) are reasonably comparable to

those of Dubé (2005), who estimated the price effect after a simulated merger between

two leading manufacturers. The merger simulations predict larger price increases for

the PLs than products of the leading manufacturer. This results from the relatively

lower own-price elasticities of PLs, and is consistent with previous findings on higher

pricing margins for PLs.

In columns 2 and 3, which assume γ = 17, the price effects of the merger for

brands owned by the merging parties tend to be underestimated. The bias is the most

27I used the PyBLP package (Conlon and Gortmaker 2020) to conduct the merger simulation.

35



pronounced for PLs. Simulated price increases are approximately 8 percent when the

market size parameter is estimated to be 12, while assuming γ = 17 yields a price

increase of 5.5 percent, biased by 31%. For brands from the leading manufacturer,

the simulated price effects are relatively lower with the assumed γ = 12, although I

acknowledge that the differences are not economically significant. In the last column,

the estimate is relatively closer to our estimates but is imprecisely estimated with

large standard errors.

In summary, both the diversion ratios and merger simulations generated by differ-

ent market sizes vary and may lead to different policy evaluations. As the potential

market size increases, the simulated price changes display a monotonic decrease.

7 Additional Results

The Online Supplemental Appendix to this paper contains additional theoretical re-

sults, another empirical application, proofs of additional Theorems, and an extensive

set of Monte Carlo experiments.

Some additional technical results include deriving the direction of bias, adding

errors to the market size specification, identifying market size in a nested logit model,

analyses of model identification with market fixed effects, and identification with

a Bernoulli distributed random coefficient. There are also extra results for the CSD

application, including price elasticities of market demand, which is useful in evaluating

a simulated soda tax. The online appendix also presents a second empirical analysis

in the ready-to-eat cereal market to verify the method’s applicability to different

empirical contexts.

Three Monte Carlo experiments are conducted. The first evaluates whether ran-

dom coefficients on an intercept or attributes remove bias induced by incorrect market

size assumptions. The second explores how sensitive parameter estimates and elastic-

ities are to market size assumptions in a random coefficients logit model. The third

experiment assesses the performance of our proposed method. Simulation results sug-

gest that our estimator works well, particularly when the true outside good share is

not too large.
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8 Conclusions

This paper shows that market size is point identified in aggregate discrete choice

demand models. My identification results use the same parametric assumptions that

are commonly imposed in practice, like those in my survey of papers published in top

5 journals (see Table 1). Point identification relies on observed substitution patterns

induced by exogenous variation in product characteristics and the nonlinearity of

the demand model. The required data are conventional market-level data used in

standard BLP estimation. I illustrate the results using Monte Carlo simulations and

provide an empirical application to merger analysis in the soft drink industry. Our

application shows that correctly measuring market size is economically important. For

instance, I find that assuming a market size larger than the true size leads to a non-

negligible downward bias in the estimated merger price increase, which could affect the

conclusions of the merger evaluation. Apart from the merger application, my results

would also have important implications for social welfare, markup calculations, tax

and subsidy policies, and the entry of new firms. It could also potentially be adapted

as a test for defining relevant product markets, which I leave for future exploration.

Potential areas for future theoretical research include deriving conditions for strong

identification and instrument selection, extending the model to micro-BLP which uses

individual choice data, and allowing for dependence among logit errors to make the

results applicable to panel data settings as in Khan, Ouyang, and Tamer (2021).

In the current application, I consider a scalar γ. A possible extension would be

to allow γ to vary based on market characteristics, such as demographic composition

and the number of retail stores. It would also be useful to test my model in an

industry where the true market size is known, such as the pharmaceutical market,

where researchers generally know the number of patients, which can be considered

as the potential market size. Another possibility for further work is generalizing the

model to empirical contexts where inside good quantity is mismeasured or unknown,

such as the consumption of informal goods or services (Pissarides and Weber 1989).

Appendix: Proofs

Proof of Theorem 1. By the mean independence condition given in Assumption 1, we

have E (ln (rjt) | Qt = q,Xjt = x) = E (ln (γWt − 1) | Qt = q,Xjt = x)− x′β. Taking
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derivative with respect to q yields 0 = ∂E (ln (rjt)− ln (γWt − 1) | Qt = q,Xjt = x)/∂q.

Let Γ be the set of all possible values of γ. For any given constant c ∈ Γ, define

the function g(c, q, x) = ∂E (ln (rjt)− ln (cWt − 1) | Qt = q,Xjt = x)/∂q.

We observe rjt, Wt, Qt and Xjt. For any constant c, observed q and x, we can

therefore nonparametrically identify g(c, q, x). In order to show point identification,

we need to verify that there exists at most one value of c ∈ Γ such that g(c, q, x) = 0

for all observed q ∈ Supp(Qt) and x ∈ Supp(Xjt). Taking the derivative of g(c, q, x)

with respect to c, we have

∂2E (ln (rjt)− ln (cWt − 1) | Qt = q,Xjt = x)

∂c∂q
=
∂E
(
− Wt

cWt−1
| Qt = q,Xjt = x

)
∂q

.

The identification then follows from the assumption that there exists (q, x) on the

support of (Qt, Xjt) such that ∂E
(
− Wt

cWt−1
| Qt = q,Xjt = x

)
/∂q is strictly positive

or strictly negative for all c ∈ Γ.

Given γ, the model becomes equivalent to a standard multinomial choice model,

and therefore β is identified the same way.

Proof of Theorem 2. Assuming that ∇θhjt(θ) is dominated by some Lebesgue inte-

grable function and applying the dominated convergence theorem, we can take the

derivative inside the expectation and have ∇θE (hjt(θ)) = E (∇θhjt(θ)). The Jaco-

bian matrix is

E (∇θhjt(θ)) = E

[
∂hjt(θ)

∂γ′
∂hjt(θ)

∂σ′
∂hjt(θ)

∂β′

]
= E

[
φj(Zt)

∂δjt(Nt,Mt, X
(2)
t ; γ, σ)

∂γ′
φj(Zt)

∂δjt(Nt,Mt, X
(2)
t ; γ, σ)

∂σ′
φj(Zt)X

′
jt

]

Recall that hjt(θ) = (δjt(Nt,Mt, X
(2)
t ; γ, σ)−X ′jtβ)φj(Zt). The first derivative of the

above matrix is an m×2K vector. ∂πjt(δt;σ)/∂σ′ is a 1×L row vector, so the second

derivative of the above matrix is an m × L matrix. Similarly, the dimension of the

last derivative is m× L. The identification proof follows directly from Proposition 2

and the rank condition that the Jacobian matrix has rank K.

Proof of Lemma 1. To ease notation in the proof, we drop the subscript j and t and

suppress the dependence of Φ and Ψ on (δt, X
(2)
t ;σ), and the dependence of φ on Z.

We make a simplifying assumption w.l.o.g.: Suppose X are exogenous and thus can
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serve as its own instruments, i.e. φ(1) = X. When γ is a scalar, the Jacobian matrix

reduces to 
E

((
φ(2)

φ(3)

)(
1
γ
Ψ

Φ

)′)
E

((
φ(2)

φ(3)

)
X ′

)

E

(
X

(
1
γ
Ψ

Φ

)′)
E (XX ′)

 ,

and recall that

A = E

((
φ(2)

φ(3)

)(
1
γ
Ψ

Φ

)′)
B = E

((
φ(2)

φ(3)

)
X ′

)

C = E

(
X

(
1
γ
Ψ

Φ

)′)
D = E (XX ′) ,

Let X = (1, X̃ ′)′. Denote Ω = (E(X̃X̃ ′)− E(X̃)E(X̃ ′))−1, then we have

D−1 =

(
1 + E(X̃ ′)ΩE(X̃) −E(X̃ ′)Ω

−ΩE(X̃) Ω

)
,

and

A−BD−1C =
1

γ

(
Cov

((
φ(2)

φ(3)

)
, (Ψ,Φ)

)
− Cov

((
φ(2)

φ(3)

)
, X̃ ′

)
ΩCov

(
X̃, (Ψ,Φ)

))

For the Jacobian matrix to have full rank, we make a technical assumption that

det(A−BD−1C) 6= 0. This assumption is generically satisfied when

Cov

((
φ(2)

φ(3)

)
, (Ψ,Φ)

)

has full rank. Note that given the regularity assumptions in the Lemma, when the

above matrix has full rank, det(A − BD−1C) equals zero only at a set of measure

zero.

Proof of Theorem 4. Assuming Mt ⊥ (ξt, Xt), we take log and conditional expecta-

tion on both sides: E (ln(Njt) |Mt) = ln(s(Mt)) + E
(

ln
(
πj(δt, X

(2)
t )
))

.

Take derivative w.r.t. m, we have
∂E(ln(Njt)|Mt=m)

∂m
= ∂ ln(s(Mt))

∂m
≡ g(m), from which
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g(m) is identified. Then ln(s(Mt)) =
∫
g(m) + c is identified up to location. Thus,

s(m) = e
∫
g(m)c̃ is identified up to scale.

Tables

Table 3: Prices and In-store Presence of Brands in Sample

Mean Median Std Min Max Brand DMA Month
Variation Variation Variation

Prices 0.40 0.39 0.12 0.11 2.75 39.73% 39.50% 0.50%
($ per 12 oz.)
In-store Presence 0.50 0.51 0.22 0.01 1.00 75.12% 13.44% 0.06%

Notes: Variance contribution of brands, DMAs and months is the R-squared value added by
each variable when it is added to the regression of price (or in-store presence) on the other
two independent variables. In-store presence: the proportion of stores with the given brand
in stock.

Table 4: Baseline Demand Estimation Results

Estimate γ Assume γ = 17 servings

Plain Logit RC Logit RC Logit RC Logit RC Logit
with two RC’s with Market FE

Means β
Price -8.748 -9.860 -13.033 -12.793 -5.245

(0.084) (0.222) (0.289) (0.434) (0.311)
In-store Presence 3.281 3.311 3.309 3.314 5.061

(0.022) (0.022) (0.023) (0.024) (0.019)

Standard Deviations σ
Price 1.952 4.395 4.257 0.007

(0.211) (0.155) (0.247) (53.834)
Constant -0.090

(1.189)

Market Size Parameter
γ 12.478 11.767

(0.263) (0.210)

Product Fixed Effects Yes Yes Yes Yes Yes
Seasonal Effects Yes Yes Yes Yes No
Region Fixed Effects Yes Yes Yes Yes No
DMA-Week (Market) Fixed Effects No No No No Yes

Notes: This table reports demand model estimates. Columns 1 and 2 correspond to plain logit and random
coefficients logit models, and γ is to be estimated. Columns 3 to 5 are standard BLP estimates assuming
γ = 17. Column 3 replicates the specification of column 2. Column 4 introduces an additional random
coefficient on the constant term and column 5 includes market fixed effects. Standard errors in parentheses.
Constant terms are omitted due to collinearity with product fixed effects.
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Table 5: Demand Elasticities and Diversion Ratios

RC Logit RC Logit RC Logit RC Logit
with two RC’s with Market FE

with γ̂ = 12 Assuming γ = 17 Assuming γ = 17 Assuming γ = 17

Own-Price Elasticities
Product 1 -3.398 -3.362 -3.351 -2.097
Product 2 -3.597 -3.493 -3.482 -2.224
Product 3 -3.651 -3.528 -3.518 -2.262
Private Label R -1.887 -2.181 -2.151 -1.000

Outside-Good Diversion Ratios
Product 1 62.8% 66.0% 66.5% 78.5%
Product 2 60.3% 63.0% 63.5% 77.2%
Product 3 59.8% 62.4% 62.9% 77.0%
Private Label R 68.4% 77.7% 77.7% 76.9%

Notes: This table reports estimates of elasticities and diversion ratio. Columns 1 is based on a random
coefficients logit model with estimated γ. Columns 2 to 4 assume γ = 17. Column 2 replicates the
specification of column 1. Column 3 introduces an additional random coefficient on the constant term and
column 4 includes market fixed effects. To save space, only top-3 regular drink products are reported in
the table. R represents regular.

Table 6: Simulated Percentage Price Effects for Merging Firms’ Brands

RC Logit RC Logit RC Logit RC Logit
with two RC’s with Market FE

with γ̂ = 12 Assuming γ = 17 Assuming γ = 17 Assuming γ = 17

Manufacturer A Products 2.33 1.65 1.65 2.80
2.37 1.66 1.67 2.85
2.22 1.58 1.58 2.66
2.49 1.73 1.73 3.01

Private Label R 8.41 5.64 5.66 10.14
Private Label DT 8.21 5.56 5.57 9.83

Notes: This table reports the percentage price change after a simulated merger between Manufacturer
A and private label manufacturers. Columns 1 is based on a random coefficients logit model with
estimated γ. Columns 2 to 4 assume γ = 17. Column 2 replicates the specification of column 1.
Column 3 introduces an additional random coefficient on the constant term and column 4 includes
market fixed effects. To save space, only merging firms’ brands are reported in the table. R represents
regular. DT stands for diet.
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A Additional Proofs

Lemma 2 is the contraction mapping theorem in the appendix from Berry, Levinsohn,
and Pakes (1995).

Lemma 2. Consider the metric space (RJ , d) with d(x, y) = ‖x− y‖. Let g : RJ →
RJ have the properties:

(1) ∀δ ∈ RJ , f(δ) is continuously differentiable, with, ∀k and j,

∂gk(δ)

∂δj
≥ 0,

and
J∑
j=1

∂gk(δ)

∂δj
< 1.

(2) minj infδ gj(δ) = δ > −∞.(There is a lower bound to gj(δ), denoted δ)
(3) There is a value δ, with the property that if for any j, δj ≥ δ, then for some k,

gk(δ) < δk.

Then, there is a unique fixed point δ∗ to g in RJ .

Proof of Proposition 1. The implicit system of equations is solved for each market,
therefore we drop the t subscript in the proof to simplify the notation. We show the
proposition for a scalar γ. Let sj = Nj/M and s0 = 1 −

∑
j Nj/M . We obtain the

generalized proposition by replacing ln(sj/γ) with ln(Nj/
∑
γ1M

γ2) Now we show
that the function g(δ) = δ + ln(s)− ln(γ)− ln(π(δ;σ)) satisfies the three conditions
in Lemma 2.

(1) The function g(δ) is continuously differentiable by the differentiability of the
predicted choice probability function π(δ;σ).
First we want to show that

∂gj(δ)

∂δj
= 1− 1

πj(δ;σ)

∂πj(δ;σ)

∂δj
≥ 0

2



Take the derivative of πj(δ;σ) with respect to δj, we have

∂πj(δ;σ)

∂δj

=

∫ exp(δj +
∑

l σlxjlνil)
(

1 +
∑Jt

k=1 exp(δk +
∑

l σlxklνil)
)

(
1 +

∑Jt
k=1 exp(δk +

∑
l σlxklνil)

)2

− (exp(δj +
∑

l σlxjlνil))
2(

1 +
∑Jt

k=1 exp(δk +
∑

l σlxklνil)
)2fν(ν)dν

=

∫
exp(δj +

∑
l σlxjlνil)

1 +
∑Jt

k=1 exp(δk +
∑

l σlxklνil)
−

(
exp(δj +

∑
l σlxjlνil)

1 +
∑Jt

k=1 exp(δk +
∑

l σlxklνil)

)2

fν(ν)dν

= πj(δ;σ)−
∫ (

exp(δj +
∑

l σlxjlνil)

1 +
∑Jt

k=1 exp(δk +
∑

l σlxklνil)

)2

fν(ν)dν

Then we can rewrite the derivative of function gj(δ) as

∂gj(δ)

∂δj
= 1− 1

πj(δ;σ)

∂πj(δ;σ)

∂δj

=
1

πj(δ;σ)

∫ (
exp(δj +

∑
l σlxjlνil)

1 +
∑Jt

k=1 exp(δk +
∑

l σlxklνil)

)2

fν(ν)dν,

which is non-negative because πj(δ;σ) is strictly positive, and the integrand of
the second term is continuous and strictly positive, hence the integral over any
closed integral is strictly positive, so the same must hold over the entire real line.

Take the derivative of π(δ;σ) with respect to δj, we have

∂πk(δ;σ)

∂δj
= −

∫
exp(δk +

∑
l σlxklνil)exp(δj +

∑
l σlxjlνil)(

1 +
∑Jt

k=1 exp(δk +
∑

l σlxklνil)
)2 fν(ν)dν.

Therefore the derivative of gk(δ) with respect to δj is

∂gk(δ)

∂δj
= − 1

πk(δ;σ)

∂πk(δ;σ)

∂δj

=
1

πk(δ;σ)

∫
exp(δk +

∑
l σlxjlνil)exp(δj +

∑
l σlxjlνil)(

1 +
∑Jt

k=1 exp(δk +
∑

l σlxklνil)
)2 fν(ν)dν,
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which is non-negative because πk(δ;σ) and the integrand of the second term are
strictly positive.

To show the condition
∑J

j=1 ∂gk(δ)/∂δj < 1, note that increasing all the δj
including δ0 simultaneously will not change the market shares, implying that∑J

j=0 ∂πk(δ;σ)/∂δj = 0. Then

J∑
j=1

∂πk(δ;σ)

∂δj
= −∂πk(δ;σ)

∂δ0

> 0

We can therefore establish the condition that the derivatives of gk sums to less
than one

J∑
j=1

∂gk(δ)

∂δj
= 1− 1

πk(δ;σ)

J∑
j=1

∂πk(δ;σ)

∂δj
< 1.

(2) Rewrite gj(δ) as

gj(δ) = ln(sj)− ln(γ)− ln (Dj(δ)) ,

where Dj(δ) =

∫
exp(

∑
l σlxjlνil)

1 +
∑Jt

k=1 exp(δk +
∑

l σlxklνil)
fν(ν)dν.

A lower bound of gj can be obtained by letting all of δk go to −∞, then Dj(δ)→∫
exp(

∑
l σlxjlνil)fν(ν)dν. So the lower bound on gj(δ) is

δ ≡ ln(sj)− ln(γ)− ln

(∫
exp(

∑
l

σlxjlνil)fν(ν)dν

)

(3) The proof of this part follows Berry (1994). He shows condition (3) of Lemma
2 is satisfied by first showing that if for any product j, δj ≥ δ, then there is at
least one element k with πk(δ;σ) > sk/γ.
To construct a δ that satisfies the above requirement, first set all of δk (other
than good j and outside good) to −∞. Define δj to be the value of δj that
makes π0(δ;σ) = 1− (1− s0)/γ. Then define δ = maxj δj.
Now if there is any element of δ with δj > δ, then π0(δ;σ) < 1 − (1 − s0)/γ.

It then follows from
∑J

j=0 πj(δ;σ) = 1 that
∑J

j=1 πj(δ;σ) >
∑J

j=1 sj/γ. Thus
there is at least one good k with πk(δ;σ) > sk/γ, which implies gk(δ) < δk:

πk(δ;σ) >
sk
γ

⇐⇒ ln (πk(δ;σ)) > ln(sk)− ln(γ)

⇐⇒ ln(sk)− ln(γ)− ln (πk(δ;σ)) < 0

⇐⇒ gk(δ) = δk + ln(sk)− ln(γ)− ln (πk(δ;σ)) < δk
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Proof of Theorem 5. By Assumption 4, the conditional mean function is

E (ln (rjt) | Xjt = x) = κt + x′β ∀t ∈ (1, · · · , T ).

If Xjt is continuous, then ∂E (ln (rjt) | Xjt = x) /∂x = β. If Xjt is discrete, then
E (ln (rjt) | Xjt = x1)− E (ln (rjt) | Xjt = x2) = (x1 − x2)′β. β is therefore identified
given that the support of Xjt does not lie in a proper linear subspace of Rdim(X) for
t = 1, · · · , T and Xit does not contain a constant.

Now that we have shown β is identified, the conditional mean function becomes

E (ln (rjt) | Xjt = x)− x′β = κt ∀t ∈ (1, · · · , T ).

The left hand side is identified, and each of the T equations pins down a unique κt.
Therefore (κ1, · · · , κT ) are identified.

Proof of Theorem 6. By the mean independence condition given in Assumption 1, we
have

E (ln (rjt) | Qt = q,Xjt = x) =
1

1− σ
E (ln (γWt − 1) | Qt = q,Xjt = x)− x′ β

1− σ
.

Taking first-order derivative with respect to q yields

∂E (ln (rjt) | Qt = q,Xjt = x)

∂q
=

1

1− σ
∂E (ln (γWt − 1) | Qt = q,Xjt = x)

∂q
. (18)

Taking second-order derivative with respect to q yields

∂2E (ln (rjt) | Qt = q,Xjt = x)

∂q2
=

1

1− σ
∂2E (ln (γWt − 1) | Qt = q,Xjt = x)

∂q2
. (19)

Define functions

g(q, x) =
∂E (ln (rjt) | Qt = q,Xjt = x)

∂q
,

and

h(γ, q, x) =
∂E (ln (γWt − 1) | Qt = q,Xjt = x)

∂q
.

Dividing equation (19) by (18) yields

∂g(q, x)

∂q

1

g(q, x)
=
∂h(γ, q, x)

∂q

1

h(γ, q, x)
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Let Γ be the set of all possible values of γ. For any given c ∈ Γ, define function

f(c, q, x) =
∂h(c, q, x)

∂q

1

h(c, q, x)
− ∂g(q, x)

∂q

1

g(q, x)
.

We observe rjt,Wt, Qt and Xjt. For any constant c and observed q and x, we can
therefore nonparametrically identify f(c, q, x). In order to show point identification of
γ, we need to verify that there exists at most one value of c ∈ Γ such that f(cq, q, x) =
0 for all observed q ∈ Supp(Qt) and x ∈ Supp(Xjt). Taking the derivative of f(c, q, x)
with respect to c, we have

∂f(c, q, x)

∂c
=
∂2(h(c, q, x))

∂q∂c

1

h(c, q, x)
− ∂h(c, q, x)

∂q

h(c, q, x)

∂c

1

h(c, q, x)2

=
1

h(c, q, x)

∂2E
(

Wt

cWt−1
| Qt = q,Xjt = x

)
∂q2

−

1

h(c, q, x)2

∂2E (ln(cWt − 1) | Qt = q,Xjt = x)

∂q2

∂E
(

Wt

cWt−1
| Qt = q,Xjt = x

)
∂q

.

The identification of γ then follows from the assumption that there exists (q, x) on

the support of (Qt, Xjt) such that ∂f(c,q,x)
∂c

is strictly positive or strictly negative for
all c ∈ Γ.

Given a unique γ, and the assumption that h(γ,q,x)
g(q,x)

6= 0, we can solve for σ explicitly
as

σ = 1− h(γ, q, x)

g(q, x)
.

Given γ and σ, the model reduces to a standard multinomial logit model, and β/(1−σ)
is identified in a linear regression model. Given β/(1 − σ) and σ, we can solve for
β.

B Robustness Tests in the Literature

A full list of all 29 papers in Table 1 is available upon requested. Here, I provide a brief
overview of studies published in top 5 journals that have conducted robustness checks
on the impact of market size definitions in demand models. For example, in Aguiar
and Waldfogel (2018), while their primary measure of interest, the change in consumer
surplus ratio (∆CS Ratio), remains stable regardless of market size definitions, the
absolute value of (∆CS) is sensitive. When the number of potential consumer is
rescaled from 24 times to 6 times the number of internet users, ∆CS falls from 11.8
to 5.07, though the ratio between the ∆CS of two different counterfactual scenarios
remains unchanged. Similarly, Wollmann (2018) studies mergers with endogenous
repositioning and finds that total output and compensating variation are sensitive
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to market size assumptions. In the main text, total output decreases by 1.3%, with
compensating variation ranging between $22M and $28M. However, increasing the
market size by 7% results in a 0.2% increase in output and compensating variation
turning negative, ranging from -$4M to -$15M. In Bourreau, Sun, and Verboven
(2021), increasing the potential market size by 50% significantly alters both point
estimates and confidence intervals, For example, the estimate of the random coefficient
on price changes from -3.9 to -2.4, and for forfait bloque from 37.7 to 75.4. Standard
errors also shift notably, from 0.6 to 1.8, and 5.5 to 21.5, respectively. Li (2018) tests
sensitivity in the car market by doubling market size. The estimated impacts on sales
and key parameters such as the price coefficient, as well as counterfactual outcomes
remain relatively stable, with changes of at most 4%. However, it is important to
note that doubling the total market size only shifts the implied outside option share
from 97% to 99% in this context. Lastly, Egan, MacKay, and Yang (2022) examine
the sensitivity of their results by scaling the outside option share by a factor of 5.
Certain estimates like the expected return in the year of 2009, show notable changes,
dropping from 30% to 10%.

These studies together demonstrate that while some results may be robust to
market size changes, certain calculations and counterfactual results can still be quite
sensitive.

C Bias Caused by Mismeasured Market Size

I show that the usual approach that estimates demand based on equation (1) with
a mismeasured market size will lead to biased estimates of β. To see this, suppose
the true model is given by equation (5) with true value of γ 6= 1. Without loss of
generality, let sjt = Njt/Mt and s0t = (Mt − N total

t )/Mt denote the mismeasured
market shares calculated based on the incorrect assumption that market size is γ̃Mt,
with γ̃ = 1. Define µjt to be the difference between the true choice probabilities
ln(πjt/π0t) and the mismeasured market shares ln(sjt/s0t), so it gives the model that
relates observed market shares to covariates and errors

ln

(
sjt
s0t

)
= X ′jtβ + ξjt + µjt,

with

µjt = ln

(
sjt
s0t

)
− ln

(
πjt
π0t

)
= ln

(
γWt − 1

Wt − 1

)
= ln

(
1

/(
1

γ
+

(
1

γ
− 1

)
1− π0t

π0t

))
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by construction. The first equality is by the definition of µjt. The second equality
follows from the definition of mismeasured market shares and equations (1) and (5).
The third equality follows from equation (4). It is not reasonable to believe that π0t

would be independent of Xjt because by the model, π0t depends on the characteris-
tics of all goods. One possible technique to fix the problem is using a standard 2SLS
regression or GMM with appropriate instruments. In this case, a valid instrument
should be correlated with the demand covariates Xjt, and in the meanwhile, uncorre-
lated with π0t, which again is a function of Xjt. In general, it is unlikely to construct
an instrument that satisfies both restrictions.

Using the relationship provided above, we can predict the direction of the bias:
Suppose that the observed market size is larger than the true size (i.e. γ < 1), the
model predicts that the price of good j will be positively correlated with µjt, and
negatively correlated with its own market share. Therefore, the estimate of the price
coefficient will be biased downward (in absolute value), implying an underestimated
price sensitivity.

D Extension of the Simple Logit Case

rjt and r∗jt are defined as in section 3. Now we assume

ln (rjt) = ln
(
r∗jt
)

+ ejt.

Here, ejt is the error in ln (rjt) that we will later assume to have mean zero. It can
include sampling errors, measurement errors, or aggregate unobserved heterogeneity
in individual utility.

Then we assume that the mismeasurement in Wt relative to π0t takes the form

ln

(
π0t

1− π0t

)
= ln (γWt − 1) + vt

for some constant γ and some random mean zero noise vt. I add the error term vt
to account for this relationship being approximate rather than exact. With the addi-
tional vt, 1−π0t would approximately equal 1/ (γWt), and therefore ln (π0t/(1− π0t))
would approximately equal ln (γWt − 1).

Putting the above equations and assumptions together we get the estimating equa-
tion

ln (rjt) = ln (γWt − 1) +X ′jtβ + ujt ∀j ∈ Jt
where

ujt = ξjt + ejt + vt.

To achieve identification as in section 3, we only need to modify the mean inde-
pendence assumption such that E (ujt | Qt, X1t, . . . , XJtt) = 0, where everything else
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is defined as in section 3.

E Market Fixed Effects Approach for Simple Logit

Returning to equation (5), observe that the term with the unknown π0t shows up
additively, and it varies by market, not by product. I could allow for separate inter-
cepts for each market to capture the unknown π0t. The inclusion of the market level
intercepts allows for unobserved aggregate market effects of the kind introduced by
the presence of outside goods. Let (κ1, · · · , κT ) denote the aggregate market-varying
and product-invariant parameters, then we can rewrite the model of equation (5) as

ln (rjt) = κt +X ′jtβ + ujt for each t = 1, · · · , T.

Assumption 4. E(ujt | Xjt) = 0 for all t ∈ (1, · · · , T ). The support of Xjt does not
lie in a proper linear subspace of RL. The number of products J →∞.

The conditional mean in Assumption 4 takes expectation across all products j for
a fixed market t. Assumption 4 first assumes all Xjt are exogenous characteristics.
Prices are taken to be exogenous throughout the context of the plain logit model for
expositional purposes. Assumption 4 also imposes no multicollinearity requirements
on Xjt.

Theorem 5. Let Assumption 4 hold. Let β0 be the coefficient on the constant. Nor-
malize β0 = 0. Then (κ1, · · · , κT , β) are identified.

The proof is in Supplement A. Theorem 5 indicates that all parameters are iden-
tified except for the constant. This result has straightforward and important impli-
cations for how one can deal with the unobserved market size. In particular, when
we observe data from a single market (T = 1), estimating κt resembles estimating
the constant term. The desirable thing is that it would only bias the estimate of the
constant in the consumer’s indirect utility function and does not affect estimates of
elasticities. For T ≥ 2, when there are repeated measures of the same market/region
over multiple time periods, or when we have cross-sectional data from more than one
market/region, including market or time dummies in the model ensures consistent
estimation of all parameters but the constant.

However, this method comes with some costs. First, it incurs efficiency loss be-
cause the data variation across markets is not exploited. Moreover, coefficients of
market-level regressors will not be identified, so we cannot estimate marginal effects
of any market characteristics. The biggest limitation is that this method relies on the
functional form of the model specification. It works only in the plain logit model as a
special case and cannot be generalized to the random coefficients demand model (see
section 4.4).
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F Identification of Market Size in Nested Logit

Model

Following the nested logit framework in McFadden (1977) and Cardell (1997), we
assume the utility of consumer i for product j belonging to group g is

Uijt = δjt + ζigt + (1− ρ)εijt,

where δjt = X ′jtβ + ξjt and εijt is independently and identically distributed with
extreme value type I distribution as before. The unobserved group specific taste ζigt
follows a distribution such that ζigt + (1− ρ)εijt is also distributed extreme value. ρ
measures the correlation of unobserved utility among products in group g. A larger
value of ρ indicates greater correlation within nest. When ρ = 0, the within group
correlation of unobserved utility is zero, and the nested logit model degenerates to
the plain multinomial logit model.

Berry (1994) shows that demand parameters β and ρ can be consistently estimated
from a linear regression similar to the logit equation (1), with an additional regressor
ln(πj|gt),

ln(πjt/π0t) = X ′jtβ + ρ ln(πj|gt) + ξjt, (20)

where πj|gt is the conditional choice probability of product j given that a product in
group g is chosen.

Consider the case where all goods are divided up into two nests, with the outside
good as the only choice in group g = 0 and all inside goods belonging to group g = 1.
In this case, πj|gt = r∗jt for j 6= 0, where r∗jt is defined in section 3.2. Then we can
rewrite (20) as

ln
(
r∗jt
)

=
1

1− ρ
ln

(
π0t

1− π0t

)
+X ′jt

β

1− ρ
+

ξjt
1− ρ

.

Following the same exposition of the market size model as in section 3.2, we assume
equation (4) hold. Combining above equations and assumptions we get the estimating
equation for the nested logit model

ln (rjt) =
1

1− ρ
ln (γWt − 1) +X ′jt

β

1− ρ
+

ξjt
1− ρ

. (21)

Theorem 6. Given Assumption 1 and equation (21), let Γ be the set of all possible
values of γ, if

1. all relevant first and second order derivatives exist,
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2. ∂f(c, q, x)/∂c > 0 or < 0 for all c ∈ Γ, where

f(c, q, x) =
∂h(c, q, x)

∂q

1

h(c, q, x)
− ∂g(q, x)

∂q

1

g(q, x)
,

g(q, x) =
∂E (ln (rjt) | Qt = q,Xjt = x)

∂q
,

h(c, q, x) =
∂E (ln (cWt − 1) | Qt = q,Xjt = x)

∂q
,

3. and h(c, q, x) 6= 0 for all c ∈ Γ.

Then γ, β and ρ are identified.

The proof of theorem 6 works by showing that there exists q and x such that
f(c, q, x) = 0 has a unique solution of c. In practice, if Qt is a scalar random variable,
we can use Qt and any nonlinear function of Qt as instruments to estimate γ and ρ.
Nonlinear functions of Qt (e.g.

√
Qt or Q2

t ) will have additional explanatory power
to separately identify γ and ρ.

I exploit the variation in Wt and Qt, and the nonlinearity of the estimating equa-
tion to identify the model. Though theoretically we can distinguish γ and ρ, it can
be seen from equation (21) that separately identifying the two parameters is hard
without strong instruments. If γWt − 1 were close to zero or if the logarithm were
not in the equation, ρ tends to be not identified. I can also see this from a first order
Taylor expansion around Wt = W (White 1980), where W is the mean of Wt. The
coefficient of the Taylor series depends on both γ and ρ. This result partly confirms
the commonly held intuition that a nest structure can mitigate biases caused by un-
known market size. A Monte Carlo simulation for the nested logit model is available
upon request.

One might be concerned that the identification result of theorem 6 relies on the
functional form assumption we made in equation (4). There might exist some different
functional form assumption of market size which would make γ and ρ unidentified.
For example, the model would be unidentified by letting the true market size be
(exp(γW̃t) + 1)N total

t , for some variable W̃t. In this case, equation (21) reduces to
ln (rjt) = 1/(1− ρ)γW̃t + X ′jtβ/(1− ρ) + ξjt. However, a market size model of this
form is odd and lack of economic meaning.

G Testing for Relevance of Instruments in RCL

Gandhi and Houde (2019) show that the relevance of instruments in BLP models
can be tested by estimating a plain logit regression on product characteristics and
instruments, with the coefficients determining the strength of these instruments. I
re-define the parameters and show that the same test of instrument relevance can be
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applied in the setting of this paper, for both the random coefficients and the market
size parameter.

Gandhi and Houde (2019) use λ to denote the vector of parameters that determine
the joint distribution of the random coefficients. Here I follow this notation and extend
it to include the market size parameters. Specifically, let λσ = σ, λγ1 = γ1 − 1 and
λγ2 = γ2, and λ = (λσ, λγ1 , λγ2) be the full vector of nonlinear parameters in the
model. By absorbing λγ into the conditioning parameter vector, we rewrite equation
(9) as

ξjt (Nt,Mt, Xt; θ) = δjt

(
Nt,Mt, X

(2)
t ;λ

)
−X ′jtβ. (22)

Equation (22) encompasses equation (9) and is similar to equation (4) in Gandhi and
Houde (2019). Here I have (Nt,Mt) instead of the observed market shares st in their
function.

The endogenous problem arises for λσ and λγ because the inverse demand function
depends on quantities Nt (or market shares) of all products, and these endogenous
quantities interact nonlinearly with λσ and λγ in the inverse demand function. There-
fore, we need instrumental variables for quantities (or market shares) of products to
identify λσ and λγ. This is the nonlinear simultaneous equations model that has been
previously studied by Jorgenson and Laffont (1974) and Amemiya (1974). Unlike in
linear models, where the strength of instruments can be assessed by linear regression
of endogenous variables on excluded instruments, for nonlinear models, how to detect
weak instruments is not obvious.

I use the method as in Gandhi and Houde (2019) to test the relevance of in-
struments for identifying λσ and λγ, which I summarize here. By equation (7)
in Gandhi and Houde (2019), the reduced form of the inverse demand function

E
(
δjt(Nt,Mt, X

(2)
t ;λ) | Zt

)
can be approximated by a linear projection onto func-

tions of instruments:

E
(
δjt

(
Nt,Mt, X

(2)
t ;λ

)
| Zt
)
≈ φj(Zt)

′α.

Definition 1 in Gandhi and Houde (2019) provides a practical method referred
to as “IIA-test” to detect the strength of the instruments by evaluating the inverse
demand function at λ = 0 (suppose the true parameters are λ0 6= 0). Evaluating the
inverse demand function at λσ = λγ1 = λγ2 = 0, we have

E
(
δjt

(
Nt,Mt, X

(2)
t ;λ = 0

)
| Zt
)

= E

(
ln

(
Njt

Mt −
∑Jt

j=1Njt

)
| Zt

)
≈ X ′jtα1 + αpP̂jt + φ−Xj (Zt)

′α2,

where P̂jt is the projection of prices on Xt and price instruments, and φ−Xj (Zt) is a

subvector of instruments excluding Xjt. Note that P̂jt is constructed based on exoge-
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nous variables and thus satisfied the mean independence restriction of Assumption 3.
The regression relates the observed product quantities to product characteristics and
functions of instruments. The null hypothesis of the test is that the model exhibits
IIA preference and market shares calculated by Njt/Mt are not mismeasured. One
can reject the null hypothesis when the parameter vector α2 in the reduced form
regression is different from zero. On the other hand, when α2 is close to zero, it
indicates that the instruments are weak.

H Monte Carlo Simulations

The data generating process for the simulation datasets follows closely that in Arm-
strong (2016), but we only consider small J environments to avoid the weak instru-
ments problem Armstrong raised. Prices are endogenously generated from a demand
and supply model, where firms compete a la Bertrand in the market. In the base-
line design of the Monte Carlo study, the number of products varies across markets.
2/3 of markets have 20 products per market, and the remaining 1/3 of markets have
60 products in the market. Each firm has 2 products. Other choices of number of
products per firm do not significantly alter the results. I consider a relatively small
sample size of T = 100. I use R = 1000 replications of each design.

Consumer utility is given by the random coefficients model described in section 4

Uijt = β0 + (βp + σνi)Pjt + β1X1,jt + ξjt + εijt, (23)

where νi is generated from a standard normal distribution. Firm marginal cost is
MCjt = α0 + α1X1,jt + α2XS,jt + ηjt. ξjt and ηjt are generated from a mean-zero
bivariate normal distribution with standard deviations σξ = ση = 0.8 and covariance
σξη = 0.2. X1,jt and the excluded cost shifter XS,jt are drawn from a uniform (0, 1)
distribution and independent of each other. All random variables are independent
across products j and markets t.

The true values of cost parameters are (α0, α1, α2) = (2, 1, 1). Demand coefficients
and the random coefficient take different values depending on designs.

I compute the true choice probabilities πjt in accordance with equation (7). By
equations (4), we can compute Njt/Mt = γπjt, where the true value is γ = 1 through-
out the Monte Carlo exercise. In the estimation, one assumes a possibly wrong γ̃ and
uses the mismeasured sjt ≡ Njt/γ̃Mt as the observed market shares.

The instruments we use in the GMM estimation in all experiments are

Zjt = (1, X1,jt,
Jt∑
k=1

X1,kt,
∑
k∈Jf

X1,kt, XS,jt, X
2
S,jt),

where product j is produced by firm f and Jf is the set of all products produced by
firm f . I include BLP-type instruments or Gandhi and Houde differentiation instru-
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ments as well as functions of excluded cost instruments. The optimization algorithm
we use for the GMM estimation is the gradient-based quasi-Newton algorithm (fmi-
nunc in MATLAB).

H.1 Random Coefficients on Constant Term and Price

The first simulation is designed to assess whether and to what extent random coeffi-
cients removes the biases induced from the wrong market size. I generate data from
a plain logit model (σ = 0 in the model of equation (23)). It is widely believed that
random coefficients partly take over the role of γ and can fix issues caused by unob-
served market size. To see if this is true, for each of the 1, 000 simulated datasets,
we consider three values of γ̃ (γ̃ = 1, 2, 4) and estimate both the correctly specified
plain logit model and the random coefficients model with a random coefficient on the
constant term and price, respectively. I assume that the true demand coefficients are
β = (2,−1, 2).

Tables H.1 to H.3 report results from estimating the plain logit model and the
more flexible random coefficients models. Each table shows results for three different
assumed market size γ̃. I report estimates of β, σ, and nonlinear functions of de-
mand parameters, including the own- and cross-price elasticities, and diversion ratios
averaged across products for the first market. Reported summary statistics of each
parameter estimate across simulations are the mean (MEAN), the standard deviation
(SD), and the median (MED).

In Table H.1, comparing to estimates for the specification with correctly measured
market size (γ̃ = 1) in the first three columns, the means of β’s change monotonically
as we increase the assumed market size, and their standard deviations change as
well. The implied elasticities and diversion ratios are all sensitive to the assumed
market size. When we quadruple the assumed market size, the mean of the own-price
elasticity increases from −5.99 to −4.17, the cross-price elasticity decreases from 0.077
to 0.028, the individual diversion ratio falls by half and the diversion to the outside
good rises from around 17% to 79%.

Table H.2 shows the results for estimating the random coefficients model with
a random coefficient on the constant term. Although the incorrectly assumed mar-
ket size results in biased estimates of β’s, the own-price elasticities and individual
diversion ratios of γ̃ = 2, 4 are comparable to the ones of γ̃ = 1. The cross-price
elasticities of the model with incorrectly assumed market size are also closer to those
of γ̃ = 1, relative to the plain logit model in Table H.1 (decreases from 0.078 to 0.069
versus from 0.077 to 0.028). In contrast, the biases in the outside good elasticity and
outside good diversion ratio remain large. When we quadruple the assumed market
size, the mean of outside good diversion ratio rises from roughly 17% to 27% and the
outside-good price elasticity decreases from 0.077 to 0.007.

In Table H.3, we estimate the model with a random coefficient on price. Includ-
ing the random coefficient improves especially the estimates of own- and cross-price
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elasticities as well as individual diversion ratios, similar to those in Table H.2.
Although not shown in the table, we also experimented with different numbers of

products per market. The design where the number of products varies across markets
generally yields larger biases than the design where the number of products is fixed.

Finally, in Table H.4, we report the estimates from our proposed method of equa-
tion (5). Results are based on the IV-GMM estimation that uses cost shifters and
sum of characteristics as instruments for both price and the observed market to sales
variable Wt defined in section 3. Estimates of β and γ are very close to the true val-
ues, with small standard deviations. The implied elasticities and diversion ratios are
quite comparable to the estimates of the logit model with correctly assumed market
size shown in the first three columns of Table H.1.

To summarize, we find that including a random coefficient on either term ac-
counts for the incorrectly assumed γ̃, so that the biases in certain calculations are
relatively small. This finding is consistent with the intuition that σ partly corrects
for the mismeasured market size. However, biases in other substitution patterns such
as cross-price elasticities, outside-good elasticities and diversion ratios are not fully
removed.

Table H.1: Monte Carlo Results: Plain Logit, True γ = 1

γ̃ = 1 γ̃ = 2 γ̃ = 4

TRUE MEAN SD MED MEAN SD MED MEAN SD MED

β0 2 1.99 0.318 2.006 -1.205 0.534 -1.192 -2.401 0.594 -2.379
βp -1 -0.998 0.056 -1.002 -0.731 0.094 -0.732 -0.688 0.105 -0.691
β1 2 1.998 0.076 2 1.725 0.105 1.724 1.681 0.114 1.681
Own-Elasticity -5.994 0.354 -6.006 -4.415 0.584 -4.418 -4.17 0.649 -4.181
Cross-Elasticity 0.077 0.005 0.077 0.028 0.004 0.028 0.013 0.002 0.013
Outside-Good Elasticity 0.077 0.005 0.077 0.028 0.004 0.028 0.013 0.002 0.013
Diversion Ratio 0.014 0 0.014 0.007 0 0.007 0.003 0 0.003
Outside-Good Diversion 0.167 0.027 0.166 0.587 0.013 0.586 0.794 0.007 0.794

Notes: The table reports the empirical mean (MEAN), the standard deviation (SD), and the median (MED)
of the demand parameters, the implied price elasticities and diversion ratios for the first market. The GMM
estimates are based on 1, 000 generated data sets of sample size T = 100 and varied J . The true model is a plain
logit model, with γ = 1. Parameters are estimated from the plain logit model assuming γ̃ = 1, 2, 4.
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Table H.2: Monte Carlo Results: Random Coefficient on Constant Term, True γ = 1

γ̃ = 1 γ̃ = 2 γ̃ = 4

TRUE MEAN SD MED MEAN SD MED MEAN SD MED

σ 0 0.037 0.273 0 3.998 0.168 3.992 5.116 0.172 5.11
β0 2 2.039 0.343 2.05 0.86 0.333 0.862 -1.806 0.321 -1.79
βp -1 -1.003 0.057 -1.005 -1.001 0.058 -1.003 -1.001 0.058 -1.003
β1 2 2.003 0.076 2.005 2.004 0.078 2.005 2.004 0.078 2.005
Own-Elasticity -6.022 0.357 -6.031 -6.018 0.364 -6.029 -6.02 0.365 -6.03
Cross-Elasticity 0.078 0.005 0.078 0.069 0.005 0.069 0.068 0.005 0.068
Outside-Good Elasticity 0.077 0.005 0.077 0.017 0.001 0.017 0.007 0 0.007
Diversion Ratio 0.014 0 0.014 0.013 0 0.013 0.012 0 0.012
Outside-Good Diversion 0.166 0.027 0.165 0.255 0.01 0.255 0.271 0.009 0.271

Notes: The table reports the empirical mean (MEAN), the standard deviation (SD), and the median (MED)
of the demand parameters, the implied price elasticities and diversion ratios for the first market. The GMM
estimates are based on 1, 000 generated data sets of sample size T = 100 and varied J . The true model is a plain
logit model, with γ = 1. Parameters are estimated from a random coefficients model with the random coefficient
on the constant term, assuming γ̃ = 1, 2, 4.

Table H.3: Monte Carlo Results: Random Coefficient on Price, True γ = 1

γ̃ = 1 γ̃ = 2 γ̃ = 4

TRUE MEAN SD MED MEAN SD MED MEAN SD MED

σ 0 0.013 0.064 0 0.712 0.057 0.712 0.92 0.044 0.919
β0 2 2.063 0.534 2.057 2.946 0.417 2.951 2.879 0.408 2.88
βp -1 -1.005 0.074 -1.006 -1.39 0.071 -1.389 -1.86 0.084 -1.858
β1 2 2.006 0.09 2.006 2.013 0.08 2.013 2.013 0.08 2.014
Own-Elasticity -6.034 0.434 -6.031 -6.005 0.402 -6.013 -6.026 0.403 -6.032
Cross-Elasticity 0.078 0.007 0.078 0.065 0.006 0.065 0.063 0.005 0.063
Outside-Good Elasticity 0.078 0.005 0.078 0.025 0.002 0.025 0.01 0.001 0.01
Diversion Ratio 0.014 0 0.014 0.012 0 0.012 0.011 0 0.011
Outside-Good Diversion 0.167 0.027 0.165 0.308 0.019 0.308 0.329 0.02 0.329

Notes: The table reports the empirical mean (MEAN), the standard deviation (SD), and the median (MED)
of the demand parameters, the implied price elasticities and diversion ratios for the first market. The GMM
estimates are based on 1, 000 generated data sets of sample size T = 100 and varied J . The true model is a plain
logit model, with γ = 1. Parameters are estimated from a random coefficients model with the random coefficient
on price, assuming γ̃ = 1, 2, 4.
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Table H.4: Monte Carlo Results: Estimating γ in the Plain Logit Model

TRUE MEAN SD MED

γ 1 1.001 0.011 1.001
β0 2 1.99 0.341 1.993
βp -1 -0.999 0.058 -1
β1 2 1.999 0.077 2
Own-Elasticity -5.996 0.362 -6.004
Cross-Elasticity 0.077 0.005 0.077
Outside-Good Elasticity 0.077 0.005 0.077
Diversion Ratio 0.014 0 0.014
Outside-Good Diversion 0.168 0.028 0.167

Notes: The table reports the empirical mean (MEAN), the
standard deviation (SD), and the median (MED) of the de-
mand parameters, the implied price elasticities and diversion
ratios for the first market. The GMM estimates are based
on 1, 000 generated data sets of sample size T = 100 and
varied J . The true model is a plain logit model. Parame-
ters β and γ are estimated from IV-GMM estimations using
excluded cost shifters and BLP instruments.

H.2 Sensitivity to Market Size Assumption

The second experiment complements the first experiment. I now generate data from
a random coefficients model, with a random coefficient for the price. More specifi-
cally, we assume that β = (2,−2, 2), and σ = 1. For each of the 1, 000 simulated
datasets, we estimate the random coefficients model and consider four values of γ̃
(γ̃ = 1, 2, 4, 8). This experiment is designed to assess how parameter estimates and
the implied substitution patterns vary with market size assumptions in a random
coefficients logit model.

Table H.5 shows results of demand estimates and the implied statistics. Some
general tendencies stand out. First, consumer heterogeneity (σ) and disutility for
price (βp) tend to be overestimated as γ̃ increases. The direction of biases in β0 is
ambiguous. Second, the implied elasticities and diversion ratios give similar results as
those in Table H.3. The outside-good elasticities and the outside-good diversion ratios
are most sensitive to the choice of γ̃. The cross-price elasticities are also affected, but
not as sensitive as the former two calculations. However, biases in elasticities and
diversion ratios tend not to be monotonic in γ̃. For instance, γ̃ = 2 leads to an
upward bias of the diversion to outside good (from around 17% to 20%), but γ̃ = 4
gives a modest downward bias of the outside-good diversion (from 17% to 16%). The
extreme case, which imposes γ̃ = 8, results in a much larger bias (from 17% to 25%).
Hence, imposing different assumptions of the market size is not a simple rescaling of
the calculations. This again confirms that random coefficients logit models do not
correct for all biases induced by wrong market size assumptions.
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Table H.5: Sensitivity to Market Size Assumptions in Random Coefficients Logit,
True γ = 1

γ̃ = 1 γ̃ = 2 γ̃ = 4

TRUE MEAN SD MED MEAN SD MED MEAN SD MED

σ 1 1 0.034 0.999 1.413 0.036 1.413 2.646 0.173 2.629
β0 2 2.012 0.447 1.999 1.431 0.396 1.418 2.164 0.604 2.143
βp -2 -2.001 0.068 -2 -2.68 0.069 -2.681 -4.604 0.273 -4.577
β1 2 1.998 0.054 2.001 1.984 0.055 1.987 2 0.055 2.001
Own-Elasticity -7.095 0.328 -7.079 -6.922 0.334 -6.913 -7.025 0.392 -6.986
Cross-Elasticity 0.077 0.005 0.076 0.071 0.004 0.071 0.075 0.005 0.074
Outside-Good Elasticity 0.029 0.003 0.029 0.011 0.001 0.011 0.004 0 0.004
Diversion Ratio 0.014 0 0.014 0.014 0 0.014 0.014 0.001 0.014
Outside-Good Diversion 0.175 0.025 0.176 0.201 0.022 0.201 0.167 0.033 0.168

γ̃ = 8

σ 1 2.427 0.048 2.426
β0 2 -1.252 0.416 -1.247
βp -2 -4.307 0.091 -4.306
β1 2 1.91 0.066 1.909
Own-Elasticity -5.84 0.445 -5.826
Cross-Elasticity 0.052 0.004 0.052
Outside-Good Elasticity 0.002 0 0.002
Diversion Ratio 0.013 0 0.013
Outside-Good Diversion 0.247 0.023 0.246

Notes: The table reports the empirical mean (MEAN), the standard deviation (SD), and the median (MED)
of the demand parameters, the implied price elasticities and diversion ratios for the first market. The GMM
estimates are based on 1, 000 generated data sets of sample size T = 100 and varied J . The true model is a
random coefficients logit model with a random coefficient for price, with γ = 1. Parameters are estimated from
the random coefficients model, assuming γ̃ = 1, 2, 4, 8.

H.3 Market Size Estimation in Random Coefficients Logit

The third experiment enables us to assess the performance of our proposed method.
As we discussed in Section 3, it suffices to use the same set of BLP-type instruments to
estimate the market size parameter γ in addition to the random coefficient parameter
σ.

The baseline design (design 1) is the same as before: 2/3 of markets have 20
products per market and the rest of markets have 60 products in the market. The
true values of demand parameters are β = (2,−2, 2). I consider two alternative
designs, changing either the market structure or demand parameters. In design 2, we
use the same set of parameters β = (2,−2, 2) as design 1, but assume all markets have
20 products. This leads to less variation in the true outside share π0t across markets.
In design 3, we use the same market structure as design 1, but assume β = (2,−3, 2).
This particular choice of parameters leads to larger true outside share π0t, and less
variation of π0t in design 3 than in design 1. The average π0t across 1, 000 simulated
samples is 0.55 for design 1, while 0.9 for design 3.
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Tables H.6 and H.7 report results from each design. In addition to the mean,
the standard deviation, and the median, we also report the 25% quantile (LQ), the
75% quantile (UQ), the root mean squared error (RMSE), the mean absolute error
(MAE), and the median absolute error (MDAE).

Table H.6 shows results for the baseline design. The primary parameter of interest,
γ, tends to be estimated precisely, with the RMSE being 0.2. Estimates of β and
σ are mostly close to the true parameter values, and the RMSEs are small. Only
the estimate of the constant term coefficient β0 is somewhat variable, having a larger
RMSE of 0.9. Although not reported in the main tables, we have estimated the same
specification replacing BLP-type instruments with Gandhi and Houde differentiation
instruments. The resulting estimates are qualitatively similar overall but somewhat
more precise with smaller RMSEs.

In Panel A of Table H.7, estimates from design 2 are generally noisier than those
in design 1, with most RMSEs in the range of 0.7 to 1.3. The median of estimates
remains close to the true values. Although γ and demand parameters are less precisely
estimated in design 2, our proposed estimation is still more preferable to making
wrong assumptions of the market size. As shown in the table, the mean of γ estimates
is 1.447, which is closer to the true value than any γ̃ > 1.5. Panel B provides results
for design 3. γ, σ and βp appear to be difficult to be precisely estimated, with large
standard deviations. Intuitively, when the shares of the outside option are too large,
the variation of market shares of inside goods is squeezed. The limited variation in
data leads to the poor performance of the estimator.

This confirms that our proposed estimator works well particularly in cases where
the true outside good share is not too large and has enough variation across markets.

Table H.6: Estimating γ in the Random Coefficients Logit Model, Design 1

TRUE MEAN SD LQ MED UQ RMSE MAE MDAE

γ 1 1.032 0.211 0.861 1.004 1.195 0.213 0.178 0.173
σ 1 0.969 0.226 0.805 1.019 1.16 0.228 0.19 0.169
β0 2 1.655 0.924 1.146 1.842 2.296 0.985 0.704 0.517
βp -2 -1.956 0.358 -2.26 -2.036 -1.686 0.361 0.303 0.273
β2 2 1.989 0.059 1.95 1.994 2.026 0.06 0.047 0.038

Notes: The table report summary statistics of the demand parameters. The GMM
estimates are based on 1, 000 generated data sets of sample size T = 100 and varied
J . The true model is a random coefficients logit model with a random coefficient
for price. Parameters β, σ and γ are estimated from IV-GMM estimations using
excluded cost shifters and BLP instruments. Design 1: β = (2,−2, 2), varied
number of products per market.
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Table H.7: Estimating γ in the Random Coefficients Logit Model, Alternative Designs

TRUE MEAN SD LQ MED UQ RMSE MAE MDAE

Panel A: Design 2
γ 1 1.447 1.188 0.887 1.006 1.711 1.269 0.607 0.222
σ 1 1.169 0.712 0.913 1.034 1.291 0.732 0.312 0.156
β0 2 1.744 0.835 1.285 1.771 2.287 0.873 0.663 0.511
βp -2 -2.273 1.109 -2.483 -2.052 -1.863 1.142 0.502 0.255
β2 2 1.991 0.077 1.936 1.994 2.044 0.078 0.062 0.052

Panel B: Design 3
γ 1 2.234 2.143 0.67 1.011 3.452 2.472 1.574 0.457
σ 1 2.518 5.15 0.795 0.994 2.223 5.367 1.743 0.287
β0 2 1.844 1.511 1.309 1.835 2.305 1.518 0.659 0.511
βp -3 -5.351 7.901 -4.938 -2.988 -2.665 8.24 2.731 0.537
β2 2 1.989 0.119 1.958 1.994 2.028 0.12 0.046 0.034

Notes: The table report summary statistics of the demand parameters. The GMM
estimates are based on 1, 000 generated data sets of sample size T = 100 and varied
J . The true model is a random coefficients logit model with a random coefficient
for price. Parameters β, σ and γ are estimated from IV-GMM estimations using
excluded cost shifters and BLP instruments. Design 2: β = (2,−2, 2), fixed number
of products per market. Design 3: β = (2,−3, 2), varied number of products per
market.

I Data Description

Following Eizenberg and Salvo (2015), I aggregate flavors and products in differ-
ent sized packages into 15 brand-groups, denoted as j = 1, · · · , 15 (e.g., Coca-Cola
Cherry 12-oz and Coca-Cola Original 16.9-oz are treated as the same brand). Fol-
lowing Dubé (2005), I consider diet and regular drinks as separate brands due to
their distinct target demographics and separate advertising and promotion strategies
within the industry. These brand categories include 11 brands owned by the three
leading companies. The 12th and 13th brand categories represent aggregate private
label (PL) brands for regular and diet drinks, respectively. To account for numerous
niche brands (each with a volume share below 1 percent), I aggregate them into the
14th and 15th brand categories for regular and diet drinks, respectively. By doing
so, I implicitly assume that product differentiation among these small brands is not
of importance in the context of our study. I limit the sample to soft drinks sold in
package types that have substantial sales, specifically including the 12-pack of 12-oz
cans, 67.6-oz bottle, 6-pack of 16.9-oz bottles, 20-oz bottle, and 8-pack of 12-oz cans.
These five package sizes dominate in terms of volume sales compared to other package
types.

Table I.1 shows volume shares of the carbonated soft drink category for each firm
averaged across DMAs. These shares represent the volume sold of brands produced
by a specific manufacturer divided by the total volume sold in the entire carbonated
soft drink category. The brands from the largest manufacturer hold a share of 35.07
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percent.

Table I.1: Manufacturer-Level Volume Shares of Carbonated Soft Drink

Regular (%) Diet (%) Total (%)

Manufacturer A 22.19 12.88 35.07
Manufacturer B 12.25 6.87 19.12
Manufacturer C 7.17 2.7 9.87
Private Label 5.09 5.44 10.53
Others 13.04 12.36 25.4

Notes: Volume shares are the volume sold of a specific manufac-
turer divided by the total volume sold of the carbonated soft drink
category.

J Additional Results for the CSD Application

J.1 Aggregate Price Elasticity

I provide additional results for the soft drink application. First, we calculate the
price elasticity of aggregate demand, which is the percentage change in total sales
for soft drinks when the prices of all soft drinks increase. Note that we can link
aggregate demand directly to the outside share, by recognizing that without an outside
option defined in the model, the aggregate market demand is perfectly inelastic. More
formally, in a simple logit model, the price elasticity of aggregate demand can be
calculated by απ0p̂, where α is the price coefficient and p̂ the average price.

This aggregate elasticity can be thought of as the market-level response to a
proportional tax imposed on all products. It is economically important, for example,
when policymakers aim to evaluate the effectiveness and targeting of soda taxes.

Figure J.1 illustrates the estimated aggregate elasticities of demand in each market
when γ = 17 and 12, respectively. With a larger market size, the aggregate elasticity
falls (in absolute value). The direction of bias is same as those found in Conlon
and Mortimer (2021). Moreover, it not only changes the mean level but also the
overall distribution across markets. This finding confirms that market size definition
is relevant for questions that affect all products in a market.
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Figure J.1: Distribution of Aggregate Elasticities across Markets
Notes: The figure shows the aggregate elasticities of demand across
markets for γ = 12 and 17.

J.2 Profiled GMM Objective Function

I plot the GMM objective function while keeping γ fixed over a grid of values and
re-optimizing the remaining parameters with the weighting matrix fixed. There
are no multiple minima within the specified interval. However, the function is not
steep around the minimum, which could pose challenges for numerical optimization.
Stronger instruments may help improve parameter identification and numerical opti-
mization.

Figure J.2: Profiled GMM Objective

Notes: The figure shows the profiled GMM objective. γ is fixed while
the remaining parameters are re-optimized.
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K Merger Analysis: Ready-to-Eat Cereal Market

The data in Nevo (2000a) is simulated from a model of demand and supply, and
consists of 24 brands of the ready-to-eat cereal products for 94 markets. Nevo’s
specification contains a price variable and brand fixed effects. The variables that
enter the non-linear part of the model are the constant, price, sugar content and a
mushy dummy. For each market 20 iid simulation draws are provided for each of
the non-linear variables. In addition to the unobserved tastes, νi, demographics are
drawn from the current population survey (CPS) for 20 individuals in each market.
It allows for interactions between demographics such as income and the child dummy
with price, sugar content and the mushy dummy, capturing heterogeneity on the
tastes for product characteristics across demographic groups. To instrument for the
endogenous variables (prices and market shares), Nevo (2000a) uses as instruments
the prices of the brand in other cities, variables that serve as proxies for the marginal
costs , distribution costs and so on.

A market is defined as a city-quarter pair and thus the market size is the total
potential number of servings. Nevo assumes the potential consumption is one serving
of cereal per day. Using notations in this paper, the assumed market potential is
therefore 1 ·Mt, where Mt is the population in city t in this case.

The baseline specification replicates that in Nevo (2000a). I calculate the esti-
mated own- and cross-price elasticities and diversion ratios, which are the mean of
all entries of the elasticity/diversion ratio matrix over the 94 markets. The results
demonstrate the average substitution patterns between products. On the basis of the
baseline estimation, we consider a hypothetical merger analysis between two multi-
products firms. Post-merger equilibrium prices are solved from the Bertrand first
order condition. Consumer surplus claculations are provided to show the impacts of
the hypothetical merger. Next, we consider an alternative choice of potential market
size. I rescale the market shares for all inside goods by a factor of 1/2, which is equiv-
alent to taking the potential market size to be double as large as in the baseline case.
I resimulate the merger using the rescaled market shares. Finally, we assume the
true market size is γ servings per person per day, estimate γ and repeat the merger
simulation.

Table K.1 reports the demand coefficients and the implied mean elasticities and
diversion ratios. The baseline estimation replicates the results in Nevo (2000a). In-
terestingly, doubling the market size has little impact on the estimates of demand
coefficients β and σ. The baseline estimation has a price coefficient of −32 and the
rescaled of −28.9. However, translating it to elasticities and diversion ratios, we see
a substantial increment in the diversion to outside option. In particular, the average
outside-good diversion increase from 37.5% to 60.2%. These estimates imply that,
if one assumed a larger market size, more consumers would switch to outside good
rather than alternative substitutes upon an increase in price of inside goods. The sec-
ond and third columns include a full set of market fixed effects. Estimates are much
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less precise than the ones without fixed effects and more sensitive to variations in the
potential market size. The last column presents the estimated γ and the associated
demand estimates. γ̂ = 0.78 means that the true market size is a potential daily
consumption of 0.78 servings per person. The implied market size is smaller than
the baseline case, leading to a lower true diversion ratio. My estimate of γ makes
economic sense and has a small standard error. Given γ estimate being 0.78, we can
calculate the outside share is about 40%. It is a relatively small outside share so the
identification is strong in the current context.

In order to quantify the overall effect of uncertainty in market size on merger
analysis, we look at the impact on both the simulated prices and consumer surplus.
Figure K.1 plots the distribution of percentage price changes pre- and post-merger,
where the three curves plot the baseline case, rescaled case and the case for our
estimate of γ. Predicted price increase is the smallest when we assume γ = 2. When
the potential market size is two times the baseline case, prices of the merging brands
respond relatively less to the merger, with a median increase of 5.4%. While in the
baseline case, the median price increase is 10.7% for the merging brands. Under
the true estimated market size γ̂ = 0.78, the predicted price increase is larger than
assuming γ = 1. This is consistent with our intuition: when there are less people
substitute to outside good, the merging firms will have a greater increase in market
power.

Next we consider the implications of our estimates for the consumer surplus change
after the merger.28 As expected, we predict a larger decrease in consumer surplus
when the price increase is high. Overall, different market sizes affect how much we
predict a merger harms consumer welfare.

28The consumer surplus is the expected value of the highest utility one can get measured in dollar
values. It is calculated by CS =

∑NS
i=1 witCSit, where the consumer surplus for individual i is

CS = ln

1 +
∑
j∈Jt

expVijt

/(−∂Vi1t
∂p1t

)
, and Vijt ≡ Uijt − εijt.
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Table K.1: Parameter Estimates for the Cereal Demand

Baseline (Mt) Rescaled (2Mt) Baseline (Mt) Rescaled (2Mt) Estimate γ

βprice -32.00 -28.90 -37.19 -43.30 -35.82
(2.30) (3.29) (8.17) (15.28) (7.06)

σcons 0.38 0.25 -0.03 14.59 0.68
(0.12) (0.16) (1.28) (1.83) (0.33)

σprice 1.80 3.31 9.76 -25.70 2.13
(0.92) (0.97) (11.21) (10.65) (1.74)

σsugar 0.00 0.02 -0.09 -0.09 -0.03
(0.01) (0.01) (0.04) (0.04) (0.03)

σmushy 0.09 0.03 0.32 -0.07 0.17
(0.19) (0.19) (0.45) (0.40) (0.27)

σcons×inc 3.10 3.22 0.26 81.68 4.12
(1.05) (0.88) (0.99) (76.06) (1.80)

σcons×age 1.20 0.70 0.56 -4.11 2.12
(1.05) (0.68) (3.95) (12.99) (1.76)

σprice×inc 4.19 -2.94 -4.83 -56.15 8.98
(4.64) (5.16) (7.09) (26.64) (152.36)

σprice×child 11.75 10.87 2.61 -297.70 14.50
(5.20) (4.75) (30.32) (104.20) (7.52)

σsugar×inc -0.19 -0.14 -0.13 -0.15 -0.30
(0.04) (0.03) (0.04) (0.11) (0.08)

σsugar×age 0.03 0.03 0.14 -0.12 0.02
(0.03) (0.03) (0.10) (0.08) (0.04)

σmushy×inc 1.50 1.40 3.40 2.05 1.53
(0.65) (0.47) (1.28) (0.97) (0.90)

σmushy×age -1.54 -1.25 -3.38 -2.17 -1.92
(1.11) (0.68) (2.58) (0.90) (1.68)

γ 0.78
(0.06)

Market fixed effects No No Yes Yes No
Own-elasticity -3.70 -3.68 -3.83 -3.21 -3.80
Cross-elasticity 0.10 0.06 0.09 0.13 0.12
Outside-good diversion 0.38 0.60 0.42 0.06 0.23

Notes: The first column is the baseline estimation where market potential is 1 serving per person per day.
The second column is the rescaled estimation where the market potential is 2 servings per person per day.
The third and fourth columns replicate the first two but including market fixed effects. In the last column
we estimate the market size parameter γ. Elasticities and the diversion ratio are averaged across markets
and products.
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Figure K.1: Equilibrium Price Changes
Notes: The figure shows changes in equilibrium prices after a merger
between firms 1 and 2.

Figure K.2: Consumer Surplus Changes
Notes: The figure shows changes in equilibrium prices after a merger
between firms 1 and 2.

L Additional Derivations

Partial Derivatives of πjt

The partial derivatives of πjt with respect to δjt and δkt are functions of mean utilities
and characteristics of all products:

∂πjt
∂δjt

=

∫
πjti

(
δt, X

(2)
t ;σ

)(
1− πjti

(
δt, X

(2)
t ;σ

))
fν(ν)dν,

∂πjt
∂δkt

= −
∫
πjti

(
δt, X

(2)
t ;σ

)
πkti

(
δt, X

(2)
t ;σ

)
fν(ν)dν,
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where

πjti

(
δt, X

(2)
t ;σ

)
=

exp
(
δjt +

∑
l σlx

(2)
jtl νil

)
1 +

∑Jt
k=1 exp

(
δkt +

∑
l σlx

(2)
ktlνil

) .
The partial derivatives of πjt with respect to σl is

∂πjt

(
δt, X

(2)
t ;σ

)
∂σl

=

∫
πjti

(
δt, X

(2)
t ;σ

)(
x

(2)
jtl −

J∑
k=1

x
(2)
ktlπkti

(
δt, X

(2)
t ;σ

))
νilfν(ν)dν

Relevance of Instruments

The legitimacy of treating λγ and λσ alike in Supplement G is shown below. I first
recognize that for any given (Nt,Mt, Xt) and model parameters, the residual function
in equation (9) can be rewritten as

ξjt

(
Nt∑

k(λγk1 + 1)M
λγk2
t

, Xt;λσ, β

)
= δjt

(
Nt∑

k(λγk1 + 1)M
λγk2
t

, X
(2)
t ;λσ

)
−X ′jtβ.

(24)
When λγ1 = λγ2 = 0, and let st denote the usual observed shares Nt/Mt, the residual
function reduces to

ξjt(st;λσ, β) = δjt(st;λσ)−X ′jtβ,

which is equivalent to equation (4) in Gandhi and Houde (2019). When λγ is different
from zero, the residual function would depend nonlinearly on λγ as well. The residual
function is not linear in λγ because ∂δjt/∂λγ is a function that depends on λγ.

The linear approximation in Supplement Gcan also be obtained from linearizing
the inverse demand function around the true λ0

δjt

(
Nt,Mt, X

(2)
t ;λ

)
≈ δjt

(
Nt,Mt, X

(2)
t ;λ0

)
+
∑
l

(λσl − λσl0)fσl,jt +
∑
k

(λγk − λγk0)fγk,jt

= X ′jtβ0 + ξjt +
∑
l

(λσl − λσl0)fσl,jt +
∑
k

(λγk − λγk0)fγk,jt,

with fσl,jt = ∂δjt(Nt,Mt, X
(2)
t ;λ0)/∂σl, f

γ
k,jt = ∂δjt(Nt,Mt, X

(2)
t ;λ0)/∂γk. Note that

fσl,jt and fγk,jt depend on the vector of δt and X
(2)
t .
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